Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 52, 2017 - Issue 5
200
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The effect of carbon within corrosion pits of iron in chloride solutions

, ORCID Icon & ORCID Icon
Pages 383-390 | Received 01 Nov 2016, Accepted 03 Mar 2017, Published online: 23 Mar 2017

References

  • Flis J, Ziomek-Moroz M, Flis-Kabulska I. Effect of carbon on corrosion and passivation of iron in hot concentrated NaOH solution in relation to caustic stress corrosion cracking. Corros Sci. 2009;51:1696–1701. doi: 10.1016/j.corsci.2009.04.020
  • Ha H, Taxen C, Williams K, et al. Effects of selected water chemistry variables on copper pitting propagation in potable water. Electrochim Acta. 2011;56:6165–6183. doi: 10.1016/j.electacta.2011.04.008
  • Poulson B. The fractography of stress corrosion cracking in carbon steels. Corros Sci. 1975;15:469–477. doi: 10.1016/0010-938X(75)90013-X
  • Xu W, Yu F, Yang L, et al. The inhibitive effect of carbon containing corrosion products inside corrosion pits on the repassivation of carbon steels. Int J Electrochem Sci. 2016;11:4323–4336. doi: 10.20964/2016.06.78
  • Kawaley G. Localised corrosion of iron in food products. Birmingham, UK: University of Birmingham; 2008.
  • Xu W, Street S, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions. (ii) On the solid corrosion products. J Electrochem Soc. 2015;162:C243–C250. doi: 10.1149/2.0591506jes
  • Mi N. Synchrotron X-ray studies of atmospheric pitting corrosion of stainless steel. Birmingham, UK: University of Birmingham; 2013.
  • Sridhar N, Dunn DS. In situ study of salt film stability in simulated pits of nickel by Raman and electrochemical impedance spectroscopies. J Electrochem Soc. 1997;144:4243–4253. doi: 10.1149/1.1838173
  • Haisch T, Mittemeijer EJ, Schultze JW. On the influence of microstructure and carbide content of steels on the electrochemical dissolution process in aqueous NaCl electrolytes. Mater Corros. 2002;53:740–755. doi: 10.1002/1521-4176(200210)53:10<740::AID-MACO740>3.0.CO;2-J
  • Green JAS, Parkins RN. Electrochemical properties of ferrite and cementite in relation to stress corrosion of mild steels in nitrate solutions. Corrosion. 1968;24:66–69. doi: 10.5006/0010-9312-24.3.66
  • Haisch T, Mittemeijer E, Schultze JW. Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides. Electrochim Acta. 2001;47:235–241. doi: 10.1016/S0013-4686(01)00561-8
  • Ingham B, Ko M, Kear G, et al. In situ synchrotron X-ray diffraction study of surface scale formation during CO(2) corrosion of carbon steel at temperatures up to 90 degrees C. Corros Sci. 2010;52:3052–3061. doi: 10.1016/j.corsci.2010.05.025
  • Nesic S, Lunde L. Carbon-dioxide corrosion of carbon-steel in 2-phase flow. Corrosion. 1994;50:717–727. doi: 10.5006/1.3293548
  • Raspini I, Chung E, Saragovi C. Corrosion layers of low-alloy carbon steels in CO2(g)-saturated solutions by Mossbauer spectroscopy. Corrosion. 2000;56:832–838. doi: 10.5006/1.3280586
  • Gaudet GT, Mo WT, Hatton TA, et al. Mass transfer and electrochemical kinetic interactions in localized pitting corrosion. AIChE J. 1986;32:949–958. doi: 10.1002/aic.690320605
  • Novakovski VM, Sorokina AN. Model study of chloride pitting in 18–8 stainless steel. Corrosion Sci. 1966;6:227–233. doi: 10.1016/S0010-938X(66)80033-1
  • Tester JW, Isaacs HS. Diffusional effects in simulated localized corrosion. J Electrochem Soc. 1975;122:1438–1445. doi: 10.1149/1.2134039
  • Grimm RD, West AC, Landolt D. AC impedance study of anodically formed salt films on iron in chloride solution. J Electrochem Soc. 1992;139:1622–1629. doi: 10.1149/1.2069467
  • Laycock NJ, Newman RC. Localised dissolution kinetics, salt films and pitting potentials. Corrosion Sci. 1997;39:1771–1790. doi: 10.1016/S0010-938X(97)00049-8
  • Danielson MJ. Transport properties of salt films on nickel in 0.5 N HCl. J Electrochem Soc. 1988;135:1326–1332. doi: 10.1149/1.2095974
  • Tang YC, Davenport AJ. Magnetic field effects on the corrosion of artificial pit electrodes and pits in thin films. J Electrochem Soc. 2007;154:C362–C70. doi: 10.1149/1.2736662
  • Steinsmo U, Isaacs HS. Dissolution and repassivation kinetics of Fe-Cr alloys in pit solutions. 1. Effect of the surface salt layer. J Electrochem Soc. 1993;140:643–653. doi: 10.1149/1.2056137
  • Zhang QL, Wang RG, Kato M, et al. Observation by atomic force microscope of corrosion product during pitting corrosion on SUS304 stainless steel. Scr Mater. 2005;52:227–230. doi: 10.1016/j.scriptamat.2004.09.024
  • Galvele JR. Transport processes and mechanism of pitting of metals. J Electrochem Soc. 1976;123:464–474. doi: 10.1149/1.2132857
  • Frankel GS. Pitting corrosion of metals – a review of the critical factors. J Electrochem Soc. 1998;145:2186–2198. doi: 10.1149/1.1838615
  • Newman RC, Isaacs HS. Diffusion-coupled active dissolution in the localized corrosion of stainless-steels. J Electrochem Soc. 1983;130:1621–1624. doi: 10.1149/1.2120048
  • Frankel GS, Stockert L, Hunkeler F, et al. Metastable pitting of stainless-steel. Corrosion. 1987;43:429–436. doi: 10.5006/1.3583880

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.