Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 7: International Symposium on Coatings and Corrosion (ISCC2016)
75
Views
1
CrossRef citations to date
0
Altmetric
International Symposium on Coatings and Corrosion (ISCC2016)

Stability of custom-designed photoreactor for photocatalytic oxidation of Reactive Black 5 dye using zinc oxide

, ORCID Icon &
Pages 462-467 | Received 02 Mar 2017, Accepted 16 May 2017, Published online: 03 Sep 2018

References

  • Saygi B, Tekin D. Photocatalytic degradation kinetics of reactive black 5 (RB5) dyestuff on TiO2 modified by pretreatment with ultrasound energy. React Kinet Mech Catal. 2013;110(1):251–258. doi: 10.1007/s11144-013-0594-x
  • Soltani T, Entezari MH. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason Sonochem. 2013;20(5):1245–1253. doi: 10.1016/j.ultsonch.2013.01.012
  • Goharshadi EK, Hadadian M, Karimi M, et al. Photocatalytic degradation of reactive black 5 azo dye by zinc sulfide quantum dots prepared by a sonochemical method. Mater Sci Semicond Process. 2013;16(4):1109–1116. doi: 10.1016/j.mssp.2013.03.005
  • Laohaprapanon S, Matahum J, Tayo L, et al. Photodegradation of reactive black 5 in a ZnO/UV slurry membrane reactor. J Taiwan Inst Chem Eng. 2015;49:136–141. doi: 10.1016/j.jtice.2014.11.017
  • Chong MN, Cho YJ, Poh PE, et al. Evaluation of titanium dioxide photocatalytic technology for the treatment of reactive black 5 dye in synthetic and real greywater effluents. J Clean Prod. 2015;89:196–202. doi: 10.1016/j.jclepro.2014.11.014
  • Yuan Y, Huang G-F, Hu W-Y, et al. Tunable synthesis of various ZnO architectural structures with enhanced photocatalytic activities. Mater Lett. 2016;175:68–71. doi: 10.1016/j.matlet.2016.03.138
  • Soltani RDC, Khataee AR, Mashayekhi M. Photocatalytic degradation of a textile dye in aqueous phase over ZnO nanoparticles embedded in biosilica nanobiostructure. Desalination Water Treat. 2016;57(29):13494–13504. doi: 10.1080/19443994.2015.1058193
  • Lee KM, Lai CW, Ngai KS, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 2016;88:428–448. doi: 10.1016/j.watres.2015.09.045
  • Khattab IA, Ghaly MY, Österlund L, et al. Photocatalytic degradation of azo dye reactive Red 15 over synthesized titanium and zinc oxides photocatalysts: a comparative study. Desalination Water Treat. 2012;48(1–3):120–129. doi: 10.1080/19443994.2012.698803
  • Moussavi G, Talebi S, Farrokhi M, et al. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem Eng J. 2011;171(3):1159–1169. doi: 10.1016/j.cej.2011.05.016
  • Hayat K, Gondal MA, Khaled MM, et al. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A Gen. 2011;393(1–2):122–129. doi: 10.1016/j.apcata.2010.11.032
  • Giahi M, Ghanbari F. Photocatalytic degradation of Triton X-100 by zinc oxide nanoparticles. J Phys Theor Chem. 2010;7:189–193.
  • Ashar A, Iqbal M, Bhattia IA, et al. Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: nonylphenol ethoxylate degradation under UV and solar irradiation. J Alloys Compd. 2016;678:126–136. doi: 10.1016/j.jallcom.2016.03.251
  • Nuengmatcha P, Chanthai S, Mahachai R, et al. Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. J Environ Chem Eng. 2016;4(2):2170–2177. doi: 10.1016/j.jece.2016.03.045
  • Baeissa ES. Environmental remediation of aqueous methyl orange dye solution via photocatalytic oxidation using AgGdFeO3 nanoparticles. J Alloys Compd. 2016;678:267–272. doi: 10.1016/j.jallcom.2016.04.007
  • Antonopouloua M, Karagianni P, Konstantinou IK. Kinetic and mechanistic study of photocatalytic degradation of flame retardant tris (1-chloro-2-propyl) phosphate (TCPP). Appl Catal B Environ. 2016;192:152–160. doi: 10.1016/j.apcatb.2016.03.039
  • Chung Y-C, Chen C-Y. Degradation of di-(2-ethylhexyl) phthalate (DEHP) by TiO2 photocatalysis. Water Air Soil Pollut. 2009;200:191–198. doi: 10.1007/s11270-008-9903-9
  • Bansal P, Sud D. Photodegradation of commercial dye, procion blue HERD from real textile wastewater using nanocatalysts. Desalination. 2011;267(2–3):244–249. doi: 10.1016/j.desal.2010.09.034
  • Chong MN, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44(10):2997–3027. doi: 10.1016/j.watres.2010.02.039
  • Kazeminezhad I, Sadollahkhani A. Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci Mater Electr. 2016;27(5):4206–4215. doi: 10.1007/s10854-016-4284-0
  • Maeng SK, Cho K, Jeong B, et al. Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: the effects of pH and dissolved organic matter characteristics. Water Res. 2015;86:25–34. doi: 10.1016/j.watres.2015.05.032
  • Gaya UI, Abdullah AH, Zainal Z, et al.et al. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. J Hazard Mater. 2009;168:57–63. doi: 10.1016/j.jhazmat.2009.01.130
  • Peng Y, Ji J, Chen D. Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl Surf Sci. 2015;356:762–768. doi: 10.1016/j.apsusc.2015.08.070
  • Kosmulski M. pH-dependent surface charging and points of zero charge. J Colloid Interface Sci. 2006;298(2):730–741. doi: 10.1016/j.jcis.2006.01.003
  • Sobana N, Swaminathan M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol Energy Mater Sol Cells. 2007;91(8):727–734. doi: 10.1016/j.solmat.2006.12.013
  • Kazeminezhad I I, Sadollahkhani A. Photocatalytic degradation of eriochrome black-T dye using ZnO nanoparticles. Mater Lett. 2014;120:267–270. doi: 10.1016/j.matlet.2014.01.118
  • Laohaprapanon S, Matahum J, Tayo L, et al. Photodegradation of reactive black 5 in a ZnO/UV slurry membrane reactor. J Taiwan Inst Chem Eng. 2015;49:136–141. doi: 10.1016/j.jtice.2014.11.017
  • Lee KM, Hamid SBA. Simple response surface methodology: investigation on advance photocatalytic oxidation of 4-chlorophenoxyacetic acid using UV-active ZnO photocatalyst. Materials. 2015;8:339–354. doi: 10.3390/ma8010339

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.