Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 6
226
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of different inorganic anions on equipment material corrosion behaviour in subcritical water oxidation

, , , &
Pages 403-412 | Received 19 Jan 2018, Accepted 19 Jun 2018, Published online: 09 Jul 2018

References

  • Yang S, Besson M, Descorme C. Catalytic wet air oxidation of succinic acid over Ru and Pt catalysts supported on CexZr1-xO2 mixed oxides. Appl Catal B Environ. 2015 Apr;165:1–9. doi: 10.1016/j.apcatb.2014.09.057
  • Fontanier V, Zalouk S, Barbati S. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts. J Environ Sci. 2011;23(3):520–528. doi: 10.1016/S1001-0742(10)60437-8
  • Keav S, de los Monteros AE, BarbierJrJ, et al. Wet air oxidation of phenol over Pt and Ru catalysts supported on cerium-based oxides: resistance to fouling and kinetic modelling. Appl Catal B Environ. 2014 May 5;150:402–410. doi: 10.1016/j.apcatb.2013.12.028
  • Wang S, Yang Q, Bai Z, et al. Catalytic wet air oxidation of wastewater of the herbicide fomesafen production with CeO2-TiO2 catalysts. Environ Eng Sci. 2015 May 1;32(5):389–396. doi: 10.1089/ees.2014.0109
  • Hou B, Li X, Ma X, et al. The cost of corrosion in China. npj Mater Degrad. 2017;1(1). doi:10.1038/s41529-017-0005-2.
  • Jiang S, Huang X, Li W, et al. Effect of steam pressure on the oxidation behaviour of alloy 625. In: Liu X, Liu Z, Brinkman K, et al., editors. Energy Materials 2017. Minerals Metals & Materials Series. Cham: Springer; 2017. p. 329–341.
  • Wang M, Wang SZ, Li YH, et al. Corrosion research on different types of nickel-base alloy and stainless steel in a wastewater under the condition of anaerobic subcritical. Energ Mech Eng. 2016;2016: 57–62. doi: 10.1142/9789814749503_0007
  • Li W, Huang X, Li J, et al. Effect of pressures on the corrosion behaviours of materials at 625A degrees C. JOM. 2017 Feb;69(2):207–216. doi: 10.1007/s11837-016-2201-x
  • Kritzer P, Boukis N, Dinjus E. The corrosion of nickel-base alloy 625 in sub- and supercritical aqueous solutions of oxygen: a long time study. J Mater Sci Lett. 1999 Nov;18(22):1845–1847. doi: 10.1023/A:1006607608189
  • Kaul C, Vogel H, Exner HE. Corrosion behaviour of inorganic materials in subcritical and supercritical aqueous solutions. Materialwiss Werkst. 1999 Jun;30(6):326–331. doi: 10.1002/(SICI)1521-4052(199906)30:6<326::AID-MAWE326>3.0.CO;2-8
  • Kritzer P, Schacht M, Dinjus E. The corrosion behaviour of nickel-base alloy 625 (NiCr22Mo9Nb; 2.4856) and ceria stabilized tetragonal zirconia polycrystal (Ce-TZP) against oxidizing aqueous solutions of hydrofluoric acid (HF), hydrobromic acid (HBr), and hydriodic acid (HI) at sub- and supercritical temperatures. Materi Corros. 1999 Sep;50(9):505–516. doi: 10.1002/(SICI)1521-4176(199909)50:9<505::AID-MACO505>3.0.CO;2-X
  • Tang X, Wang S, Qian L, et al. Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen. Chem Eng Res Des. 2015;100:530–541. doi: 10.1016/j.cherd.2015.05.003
  • Kritzer NB P, Dinjus E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures. Corrosion. 2000;56(11):1093–1104. doi: 10.5006/1.3294394
  • Laycock MHM NJ, Newman RC. Metastable pitting and the critical pitting temperature. J Electrochem Soc. 1998;145(8):2622–2628. doi: 10.1149/1.1838691
  • Hu P, Song R, Li X-J, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy. J Alloy Comp. 2017;708:367–372. doi: 10.1016/j.jallcom.2017.03.025
  • Zhou S. Corrosion resistance investigation of titanium alloy as tissue engineered bone implant. Int J Electrochem Sci. 2017: 7174–7182. doi:10.20964/2017.08.61.
  • Fu T, Wang X, Liu J, et al. Characteristics and corrosion behavior of pure titanium subjected to surface mechanical attrition. JOM. 2017;69(10):1844–1847. doi: 10.1007/s11837-017-2511-7
  • Yoon JH, Kim HS, Kim YS, et al. Influence of chromizing treatment on corrosion behavior of aisi 316 stainless steel in a supercritical water oxidation. Met Mater Int. 2004 2004;10(1):83–88. doi: 10.1007/BF03027367
  • Tang X, Wang S, Xu D, et al. Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen. Ind Eng Chem Res. 2013 Dec 25;52(51):18241–18250. doi: 10.1021/ie401258k
  • Karmiol Z, Chidambaram D. Comparison of performance and oxidation of nitronic-50 and stainless steel 316 in subcritical and supercritical water environments. Metall Mater Transactions A Phys Metall Mater Sci. 2016 May;47A(5):2498–2508. doi: 10.1007/s11661-016-3368-z
  • Lu J. Enhanced corrosion resistance of TA2 titanium via anodic oxidation in mixed acid system. Int J Electrochem Sci. 2017: 2763–2776. doi:10.20964/2017.04.69.
  • Jian-shu MZy Lu, Jiu-yuan Zhang, Chun-an MX-b Ma, et al. Corrosion of titanium in supercritical water oxidation environments. Transactions Nonferr Metal Soc China. 2002;06:1054–1057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.