Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 6
185
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synergistic effect of pH and oxalate concentration on corrosion of aluminium alloy 2024-T3

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 413-421 | Received 07 Feb 2018, Accepted 27 Jun 2018, Published online: 10 Jul 2018

References

  • Foley RT. Localized corrosion of aluminum alloys – a review. Corrosion. 1986;42(5):277–288. doi: 10.5006/1.3584905
  • Ambat R, Dwarakadasa ES. Studies on the influence of chloride ion and pH on the electrochemical behaviour of aluminium alloys 8090 and 2014. J Appl Electrochem. 1994;24(9):911–916. doi: 10.1007/BF00348781
  • Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros Sci. 2008;50(7):1841–1847. doi: 10.1016/j.corsci.2008.03.006
  • Khireche S, Boughrara D, Kadri A, et al. Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3wt.% NaCl solution. Corros Sci. 2014;87:504–516. doi: 10.1016/j.corsci.2014.07.018
  • Adhikari S, Hebert KR. Factors controlling the time evolution of the corrosion potential of aluminum in alkaline solutions. Corros Sci. 2008;50(5):1414–1421. doi: 10.1016/j.corsci.2008.01.001
  • Müller B. Citric acid as corrosion inhibitor for aluminium pigment. Corros Sci. 2004;46(1):159–167. doi: 10.1016/S0010-938X(03)00191-4
  • Amin MA, Abd El Rehim SS, El-Lithy AS. Pitting and pitting control of Al in gluconic acid solutions – polarization, chronoamperometry and morphological studies. Corros Sci. 2010;52(9):3099–3108. doi: 10.1016/j.corsci.2010.05.032
  • Dai X, Wang H, Ju L-K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger. Int Biodeterior Biodegradation. 2016;115:1–10. doi: 10.1016/j.ibiod.2016.07.009
  • Boily J-F, Qafoku O, Felmy AR. A potentiometric, spectrophotometric and pitzer ion-interaction study of reaction equilibria in the aqueous H+-Al3+, H+-oxalate and H+-Al3+-oxalate systems up to 5 mol⋅dm-3 NaCl. J Solution Chem. 2007;36(11):1727–1743. doi: 10.1007/s10953-007-9203-9
  • Nwaogu UC, Blawert C, Scharnagl N, et al. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corros Sci. 2010;52(6):2143–2154. doi: 10.1016/j.corsci.2010.03.002
  • Wilhelmsen W, Peder Grande A. The influence of oxalate ion on the corrosion and passive behaviour of aluminium. Electrochim Acta. 1988;33(7):927–932. doi: 10.1016/0013-4686(88)80089-6
  • Kobotiatis L, Kioupis N, Koutsoukos PG. Electronic properties of passive films grown on Al 7075 in solutions containing oxalate and chromate. Corrosion. 1997;53(7):562–571. doi: 10.5006/1.3290288
  • Giovanardi R, Fontanesi C, Dallabarba W. Adsorption of organic compounds at the aluminium oxide/aqueous solution interface during the aluminium anodizing process. Electrochim Acta. 2011;56(9):3128–3138. doi: 10.1016/j.electacta.2011.01.065
  • Kobotiatis L, Tsikrikas C, Koutsoukos PG. Enhanced pitting corrosion resistance of aluminum alloy 7075 in the presence of oxalate anions. Corrosion. 1995;51(1):19–29. doi: 10.5006/1.3293572
  • Solmaz R, Kardaş G, Yazıcı B, et al. Citric acid as natural corrosion inhibitor for aluminium protection. Corros Eng Sci Technol. 2008;43(2):186–191. doi: 10.1179/174327807X214770
  • Müller B, Franze K, Mebarek D. Corrosion inhibition of aluminum pigments in aqueous alkaline media at different pH values. Corrosion. 1995;51(8):625–630. doi: 10.5006/1.3293623
  • Ud Din R, Jellesen MS, Ambat R. Role of acidic chemistries in steam treatment of aluminium alloys. Corros Sci. 2015;99:258–271. doi: 10.1016/j.corsci.2015.07.018
  • Zhang B, He C, Wang C, et al. Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water. Corros Sci. 2015;94:6–20. doi: 10.1016/j.corsci.2014.11.035
  • Touir R, Cenoui M, El Bakri M, et al. Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water. Corros Sci. 2008;50(6):1530–1537. doi: 10.1016/j.corsci.2008.02.011
  • Modiano S, Fugivara CS, Benedetti AV. Effect of citrate ions on the electrochemical behaviour of low-carbon steel in borate buffer solutions. Corros Sci. 2004;46(3):529–545. doi: 10.1016/S0010-938X(03)00170-7
  • Mahdavian M, Naderi R. Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros Sci. 2011;53(4):1194–1200. doi: 10.1016/j.corsci.2010.12.013
  • El-Taib Heakal F, Shehata OS, Tantawy NS, et al. Investigation on the corrosion and hydrogen evolution for AZ91D magnesium alloy in single and anion-containing oxalate solutions. Int J Hydrogen Energy. 2012;37(1):84–94. doi: 10.1016/j.ijhydene.2011.08.051
  • Fekry AM, Tammam RH. Corrosion and impedance studies on magnesium alloy in oxalate solution. Mater Sci Eng B. 2011;176(10):792–798. doi: 10.1016/j.mseb.2011.03.014
  • Fekry AM. The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4 V alloy in oxalic acid. Electrochim Acta. 2009;54(12):3480–3489. doi: 10.1016/j.electacta.2008.12.060
  • Giacomelli C, Giacomelli FC, Baptista JAA, et al. The effect of oxalic acid on the corrosion of carbon steel. Anti-Corros Method M. 2004;51(2):105–111. doi: 10.1108/00035590410523193
  • ASTM B209-14, Standard specification for aluminum and aluminum-alloy sheet and plate. West Conshohocken (PA): ASTM International; 2014.
  • ASTM G1-03 (2017)e1, Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken (PA): ASTM International; 2017.
  • Buchheit RG. A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. J Electrochem Soc. 1995;142(11):3994–3996. doi: 10.1149/1.2048447
  • Birbilis N, Buchheit RG. Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. J Electrochem Soc. 2005;152(4):B140–B151. doi: 10.1149/1.1869984
  • Buchheit RG, Boger RK, Carroll MC, et al. The electrochemistry of intermetallic particles and localized corrosion in Al alloys. JOM. 2001;53(7):29–33. doi: 10.1007/s11837-001-0084-x
  • Montecinos S, Simison S. Corrosion behavior of Cu–Al–Be shape memory alloys with different compositions and microstructures. Corros Sci. 2013;74:387–395. doi: 10.1016/j.corsci.2013.05.012
  • Kobotiatis L, Pebere N, Koutsoukos PG. Study of the electrochemical behaviour of the 7075 aluminum alloy in the presence of sodium oxalate. Corros Sci. 1999;41(5):941–957. doi: 10.1016/S0010-938X(98)00164-4
  • Fujita J, Nakamoto K, Kobayashi M. Infrared spectra of metallic complexes. III. The infrared spectra of metallic oxalates. J Phys Chem. 1957;61(7):1014–1015. doi: 10.1021/j150553a045
  • Ito K, Bernstein HJ. The vibrational spectra of the formate, acetate, and oxalate ions. Can J Chem. 1956;34(2):170–178. doi: 10.1139/v56-021
  • Hester RE, Plane RA. Metal-oxygen bonds in complexes: Raman spectra of trisacetylacetonato and trisoxalato complexes of aluminum, gallium, and indium. Inorg Chem. 1964;3(4):513–517. doi: 10.1021/ic50014a012
  • Khaled KF. Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros Sci. 2010;52(9):2905–2916. doi: 10.1016/j.corsci.2010.05.001
  • Titz J, Wagner GH, Lorenz WJ. In situ EIS studies of localized corrosion processes in research and industrial practice. Electrochim Acta. 1992;37(12):2309–2320. doi: 10.1016/0013-4686(92)85127-7
  • Xiong G, Elam JW, Feng H, et al. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. J Phys Chem B. 2005;109(29):14059–14063. doi: 10.1021/jp0503415
  • Nevin A, Melia JL, Osticioli I, et al. The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and gas chromatography-mass spectrometry. J Cult Herit. 2008;9(2):154–161. doi: 10.1016/j.culher.2007.10.002
  • Frost RL, Yang J, Ding Z. Raman and FTIR spectroscopy of natural oxalates: implications for the evidence of life on Mars. Chin Sci Bull. 2003;48(17):1844–1852. doi: 10.1007/BF03184066
  • Cava S, Tebcherani SM, Souza IA, et al. Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys. 2007;103(2):394–399. doi: 10.1016/j.matchemphys.2007.02.046
  • Deng Y, Handoko AD, Du Y, et al. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 2016;6(4):2473–2481. doi: 10.1021/acscatal.6b00205
  • Aksu S. Electrochemistry of copper in aqueous oxalic acid solutions. J Electrochem Soc. 2005;152(12):G938–G943. doi: 10.1149/1.2121737
  • Krishnamurty KV, Harris GM. The chemistry of the metal oxalato complexes. Chem Rev. 1961;61(3):213–246. doi: 10.1021/cr60211a001
  • Buchheit RG, Grant RP, Hlava PF, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J Electrochem Soc. 1997;144(8):2621–2628. doi: 10.1149/1.1837874
  • Buchheit RG, Martinez MA, Montes LP. Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-disk collection experiments. J Electrochem Soc. 2000;147(1):119–124. doi: 10.1149/1.1393164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.