Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 8
308
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Monitoring of chloride-induced corrosion in steel rebars

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 601-610 | Received 16 Jun 2018, Accepted 18 Aug 2018, Published online: 30 Aug 2018

References

  • Bertolini L, Elsener B, Pedeferri P, et al. Corrosion of steel in concrete: prevention, diagnosis, repair. 2nd ed Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013.
  • Montemor MF, Simões AMP, Ferreira MGS. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos. 2003;25:491–502. doi: 10.1016/S0958-9465(02)00089-6
  • Apostolopoulos CA, Michalopoulos D. Effect of corrosion on mass loss, and high and low cycle fatigue of reinforcing steel. J Mater Eng Perform. 2006;15:742–749. doi: 10.1361/105994906X150867
  • Gehlen C, Osterminski K, Weirich T. High-cycle fatigue behavior of reinforcing steel under the effect of ongoing corrosion. Struct Concrete. 2016;17:329–337. doi: 10.1002/suco.201500094
  • Lan C, Bai N, Yang H, et al. Weibull modeling of the fatigue life for steel rebar considering corrosion effect. Int J Fatigue. 2018;111:134–143. doi: 10.1016/j.ijfatigue.2018.02.009
  • Zhang W, Yuan H. Corrosion fatigue effects on life estimation of deteriorated bridges under vehicle impacts. Eng Struct. 2014;71:128–136. doi: 10.1016/j.engstruct.2014.04.004
  • Bagheri AR, Zanganeh H. Comparison of rapid tests for evaluation of chloride resistance of concretes with supplementary cementitious materials. J Mater Civ Eng. 2012;24:1175–1182. doi: 10.1061/(ASCE)MT.1943-5533.0000485
  • Zhou Y, Gencturk B, Willam K, et al. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. J Mater Civ Eng. 2015;27:1–17. 04014245.
  • Ann KY, Song H. Chloride threshold level for corrosion of steel in concrete. Corros Sci. 2007;49:4113–4133. doi: 10.1016/j.corsci.2007.05.007
  • Muthulingam S, Rao BN. Non-uniform corrosion states of rebar in concrete under chloride environment. Corros Sci. 2015;93:267–282. doi: 10.1016/j.corsci.2015.01.031
  • Williamson J, Isgor OB. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar. Corros Sci. 2016;106:82–95. doi: 10.1016/j.corsci.2016.01.027
  • Andrade C, Alonso C. Corrosion rate monitoring in the laboratory and on-site. Constr Build Mater. 1996;10:315–328. doi: 10.1016/0950-0618(95)00044-5
  • Song H, Saraswathy V. Corrosion monitoring of reinforced concrete structures – a review. Int J Electrochem Sc. 2007;2:1–28.
  • Angst UM, Elsener B, Larsen CK, et al. Chloride induced reinforcement corrosion: electrochemical monitoring of initiation stage and chloride threshold values. Corros Sci. 2011;53:1451–1464. doi: 10.1016/j.corsci.2011.01.025
  • Poursaee A. Corrosion of steel in concrete structures. Duxford: Elsevier Ltd; 2016.
  • American Society for Testing and Materials (ASTM). Standard Test Method for Half-Cell Potential of Reinforcing Steel in Concrete. Standard No. ASTM C876-09:2009.
  • Elsener B, Andrade C, Gulikers J, et al. Recommendations on half-cell potential measurements – potential mapping on reinforced concrete structures. Mater Struct. 2003;36:461–471. doi: 10.1007/BF02481526
  • Broomfield JP, Davies K, Hladky K. The use of permanent corrosion monitoring in new and existing reinforced concrete structures. Cem Concr Compos. 2002;24:27–34. doi: 10.1016/S0958-9465(01)00024-5
  • Poursaee A. Potentiostatic transient technique, a simple approach to estimate the corrosion current density and SterneGeary constant of reinforcing steel in concrete. Cem Concr Res. 2010;40:1451–1458. doi: 10.1016/j.cemconres.2010.04.006
  • Newton CJ, Sykes JM. A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros Sci. 1988;28:1051–1074. doi: 10.1016/0010-938X(88)90101-1
  • Law DW, Millard SG, Bungey JH. Galvanostatic pulse measurements of passive and active reinforcing steel in concrete. Corrosion. 2000;56:48–56. doi: 10.5006/1.3280522
  • Sathiyanarayanan S, Natarajan P, Saravanan K, et al. Corrosion monitoring of steel in concrete by galvanostatic pulse technique. Cem Concr Compos. 2006;28:630–637. doi: 10.1016/j.cemconcomp.2006.03.005
  • Mariaca L, Bautista A, Podríguez P, et al. Use of electrochemical noise for studying the rate of corrosion of reinforcements embedded in concrete. Mater Struct. 1997;30:613–617. doi: 10.1007/BF02486903
  • Legat A, Leban M, Bajt Ž. Corrosion processes of steel in concrete characterized by means of electrochemical noise. Electrochim Acta. 2004;49:2741–2751. doi: 10.1016/j.electacta.2004.01.036
  • Ford SJ, Shane JD, Mason TO. Assignment of features in impedance spectra of the cement-paste/steel system. Cem Concr Res. 1998;28:1737–1751. doi: 10.1016/S0008-8846(98)00156-2
  • Dhouibi L, Triki E, Raharinaivo A. The application of electrochemical impedance spectroscopy to determine the long-term effectiveness of corrosion inhibitors for steel in concrete. Cem Concr Compos. 2002;24:35–43. doi: 10.1016/S0958-9465(01)00062-2
  • Poupard O, Aït-Mokhtar A, Dumargue P. Impedance spectroscopy of in reinforced concrete: procedure for monitoring steel corrosion. J Mater Sci. 2003;38:2845–2850. doi: 10.1023/A:1024428317968
  • Fuhr PL, Huston DR. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors. Smart Mater Struct. 1998;7:217–228. doi: 10.1088/0964-1726/7/2/009
  • Wang Y, Huang H. Optical fiber corrosion sensor based on laser light reflection. Smart Mater Struct. 2011;20:1–7. 085003.
  • Gao J, Wu J, Li J, et al. Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDT&E Int. 2011;44:202–205. doi: 10.1016/j.ndteint.2010.11.011
  • Yoon D, Weiss WJ, Shah SP. Assessing damage in corroded reinforced concrete using acoustic emission. J Eng Mech. 2000;126:273–283. doi: 10.1061/(ASCE)0733-9399(2000)126:3(273)
  • Idrissi H, Limam A. Study and characterization by acoustic emission and electrochemical measurements of concrete deterioration caused by reinforcement steel corrosion. NDT&E Int. 2003;36:563–569. doi: 10.1016/S0963-8695(03)00064-1
  • Assouli B, Simescu F, Debicki G, et al. Detection and identification of concrete cracking during corrosion of reinforced concrete by acoustic emission coupled to the electrochemical techniques. NDT&E Int. 2005;38:682–689. doi: 10.1016/j.ndteint.2005.04.007
  • Sharma S, Mukherjee A. Longitudinal guided waves for monitoring chloride corrosion in reinforcing bars in concrete. Struct Health Monit. 2010;9:35–47. doi: 10.1177/1475921710365415
  • Miller TH, Kundu T, Huang J, et al. A new guided wave–based technique for corrosion monitoring in reinforced concrete. Struct Health Monit. 2012;12:555–567.
  • Sawyer DT, Sobkowiak A, Roberts JL. Electrochemistry for chemists. 2nd ed. New York: John Wiley & Sons; 1995.
  • Muthulingam S, Rao BN. Non-uniform time-to-corrosion initiation in steel reinforced concrete under chloride environment. Corros Sci. 2014;82:304–315. doi: 10.1016/j.corsci.2014.01.023
  • Shafei B, Alipour A. Estimation of corrosion initiation time in reinforced concrete bridge columns: how to incorporate spatial and temporal uncertainties. J Eng Mech. 2015;141:1–12. 04015037. doi: 10.1061/(ASCE)EM.1943-7889.0000861
  • Chen E, Leung CKY. A coupled diffusion-mechanical model with boundary element method to predict concrete cover cracking due to steel corrosion. Corros Sci. 2017;126:180–196. doi: 10.1016/j.corsci.2017.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.