Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 53, 2018 - Issue 8
222
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Oxidation behaviour of Nimonic 263 in high-temperature supercritical water

, , &
Pages 617-624 | Received 28 May 2018, Accepted 26 Aug 2018, Published online: 10 Sep 2018

References

  • Maile K. Qualification of Ni-based alloys for advanced ultra supercritical plants. Procedia Eng. 2013;55:214–220. doi: 10.1016/j.proeng.2013.03.245
  • England DM, Virkar AV. Oxidation kinetics of some nickel-based superalloy foils and electronic resistance of the oxide scale formed in air part i. J Electrochem Soc. 1999;146:3196–3202. doi: 10.1149/1.1392454
  • Zhang Q, Tang R, Yin K, et al. Corrosion behavior of Hastelloy C-276 in supercritical water. Corros Sci. 2009;51(9):2092–2097. doi: 10.1016/j.corsci.2009.05.041
  • Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants. Corros Sci. 2008;50(11):3056–3062. doi: 10.1016/j.corsci.2008.08.024
  • Chang KH, Chen SM, Yeh TK, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700°C. Corros Sci. 2014;81:21–26. doi: 10.1016/j.corsci.2013.11.034
  • Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water. Appl Surf Sci. 2017;404:443–451. doi: 10.1016/j.apsusc.2017.01.119
  • Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800°C. Corros Sci. 2016;106:188–207. doi: 10.1016/j.corsci.2016.02.004
  • Kim D, Sah I, Lee HJ, et al. Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments. Solid State Ionics. 2013;243:1–7. doi: 10.1016/j.ssi.2013.04.010
  • Gorman DM, Higginson RL, Du H, et al. Microstructural analysis of IN617 and IN625 oxidised in the presence of steam for use in ultra-supercritical power plant. Oxid Met. 2013;79(5–6):553–566. doi: 10.1007/s11085-012-9342-2
  • Tan L, Allen TR, Yang Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water. Corros Sci. 2011;53(2):703–711. doi: 10.1016/j.corsci.2010.10.021
  • Kim D, Kim D, Lee HJ, et al. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen. J Nucl Mater. 2013;441(1):612–622. doi: 10.1016/j.jnucmat.2013.04.023
  • McIntyre NS, Rummery TE, Cook MG, et al. X-Ray photoelectron spectroscopic study of the aqueous oxidation of monel-400. J Electrochem Soc. 1976;123:1164–1170. doi: 10.1149/1.2133027
  • Huang J, Wu X, Han EH. Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments. Corros Sci. 2010;52(10):3444–3452. doi: 10.1016/j.corsci.2010.06.016
  • Lenglet M, d’Huysser A, Arsène J, et al. Xanes, X-ray photo-electron and optical spectra of divalent nickel at the crystallographic transition in NiCr2O4 and the Ni1-xCuxCr2O4 system: correlation with the Jahn-Teller effect. J Phys C Solid State Phys. 1986;19(17):L363–L368. doi: 10.1088/0022-3719/19/17/003
  • Machet A, Galtayries A, Marcus P, et al. XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water. Surf Interface Anal. 2002;34(1):197–200. doi: 10.1002/sia.1282
  • Wang Y, Liu Y, Tang H, et al. Oxidation behaviors of porous Haynes 214 alloy at high temperatures. Mater Charact. 2015;107:283–292. doi: 10.1016/j.matchar.2015.07.026
  • Reddy BM, Khan A, Yamada Y, et al. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J Phys Chem B. 2003;107(22):5162–5167. doi: 10.1021/jp0344601
  • Biesinger MC, Lau LWM, Gerson AR, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257(3):887–898. doi: 10.1016/j.apsusc.2010.07.086
  • Xue T, Wang X, Lee JM. Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. J Power Sources. 2012;201:382–386. doi: 10.1016/j.jpowsour.2011.10.138
  • Feng S, Yang W, Wang Z. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater Sci Eng: B. 2011;176(18):1509–1512. doi: 10.1016/j.mseb.2011.09.007
  • Grünert W, Stakheev AY, Feldhaus R, et al. Analysis of molybdenum (3d) XPS spectra of supported molybdenum catalysts: an alternative approach. J Phys Chem. 1991;95(3):1323–1328. doi: 10.1021/j100156a054
  • Machet A, Galtayries A, Zanna S, et al. Xps and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy. Electrochim Acta. 2004;49:3957–3964. doi: 10.1016/j.electacta.2004.04.032
  • Zhong X, Han EH, Wu X. Corrosion behavior of alloy 690 in aerated supercritical water. Corros Sci. 2013;66:369–379. doi: 10.1016/j.corsci.2012.10.001
  • Sun H, Wu X, Han EH. Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625. Corros Sci. 2009;51:2565–2572. doi: 10.1016/j.corsci.2009.06.043
  • Pérez-González FA, Garza-Montes-de Oca NF, Colás R. High temperature oxidation of the Haynes 282© nickel-based superalloy. Oxid Met. 2014;82(3–4):145–161. doi: 10.1007/s11085-014-9483-6
  • Sun M, Wu X, Zhang Z, et al. Analyses of oxide films grown on alloy 625 in oxidizing supercritical water. J. Supercrit. Fluid. 2008;47:309–317. doi: 10.1016/j.supflu.2008.07.010
  • Hepler LG, Woolley EM, Hurkot DG. Ionization constants for water in aqueous organic mixtures. J Phys Chem. 1970;74(22):3908–3913. doi: 10.1021/j100716a011
  • Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor. J Nucl Mater. 2010;402:147–156. doi: 10.1016/j.jnucmat.2010.05.010
  • Dieckmann R, Mason TO, Hodge JD, et al. Defects and cation diffusion in magnetite (III.) tracerdiffusion of foreign tracer cations as a function of temperature and oxygen potential. Ber Bunsen Phys Chem. 1978;82:778–783. doi: 10.1002/bbpc.19780820803
  • Zhang NQ, Zhu ZL, Xu H, et al. Oxidation of ferritic and ferritic–martensitic steels in flowing and static supercritical water. Corros Sci. 2016;103:124–131. doi: 10.1016/j.corsci.2015.10.017
  • Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros Sci. 1998;40:337–370. doi: 10.1016/S0010-938X(97)00140-6
  • Haugsrud R. On the high-temperature oxidation of nickel. Corros Sci. 2003;45(1):211–235. doi: 10.1016/S0010-938X(02)00085-9
  • Sabioni ACS, Huntz AM, Philibert J, et al. Relation between the oxidation growth rate of chromia scales and self-diffusion in Cr2O3. J Mater Sci. 1992;27(17):4782–4790. doi: 10.1007/BF01166020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.