Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 2
217
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effects of electrolyte thickness, chloride ion concentration, and an external direct current electric field on corrosion behaviour of silver under a thin electrolyte layer

, &
Pages 143-153 | Received 21 Aug 2018, Accepted 26 Oct 2018, Published online: 14 Nov 2018

References

  • Hienonem R, Lahtinen R. Corrosion and climatic effects in electronics. Vtt Publications. 2007;623:3–243.
  • Minzari D, Jellesen MS, Møller P, et al. Electrochemical migration on electronic chip resistors in chloride environments. IEEE Trans Device Mater Reliab. 2009;9:392–402. doi: 10.1109/TDMR.2009.2022631
  • Minzari D, Møller P, Ambat R. 2010. Investigation of electronic corrosion mechanisms. Ph.D. Thesis, Technical University of Denmark, Lyngby, Demark.
  • Schweigart H, Wack H. Humidity and pollution effects on Pb-free assemblies: a study of how metallization and operating voltage influence electrochemical migration. Mar Petrol Geol. 2009;11(6):590–591.
  • Huang H, Dong Z, Chen Z, et al. The effects of Cl− ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer. Corros Sci 2011;53:1230–1236. doi: 10.1016/j.corsci.2010.12.018
  • Huang H, Guo X, Zhang G, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer. Corros Sci 2011;53:1700–1707. doi: 10.1016/j.corsci.2011.01.031
  • Zhong X, Zhang G, Qiu Y, et al. The corrosion of tin under thin electrolyte layers containing chloride. Corros Sci 2013;66:14–25. doi: 10.1016/j.corsci.2012.08.040
  • Huang H, Pan Z, Qiu Y, et al. Electrochemical corrosion behaviour of copper under periodic wet–dry cycle condition. Microelectron Reliab 2013;53:1149–1158. doi: 10.1016/j.microrel.2013.05.002
  • Zou S, Li X, Dong C, et al. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment. Electrochim Acta. 2013;114:363–371. doi: 10.1016/j.electacta.2013.10.051
  • Medgyes B, Illés B, Beréyi R, et al. In situ optical inspection of electrochemical migration during THB tests. J Mater Sci. 2011;22:694–700.
  • Verdingovas V, Jellesen MS, Ambat R. Influence of sodium chloride and weak organic acids (flux residues) on electrochemical migration of tin on surface mount chip components. Corros Eng Sci Technol. 2013;48:426–435. doi: 10.1179/1743278213Y.0000000078
  • Zhong X, Zhang G, Qiu Y, et al. In situ study the dependence of electrochemical migration of tin on chloride. Electrochem Commun. 2013;27:63–68. doi: 10.1016/j.elecom.2012.11.010
  • Zhong X, Zhang G, Qiu Y, et al. Electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros Sci. 2013;74:71–82. doi: 10.1016/j.corsci.2013.04.015
  • Zhong X, Zhang G, Guo X. The effect of electrolyte layer thickness on electrochemical migration of tin. Corros Sci. 2015;96:1–5. doi: 10.1016/j.corsci.2015.04.014
  • Zhong X, Guo X, Qiu Y, et al. In situ study the electrochemical migration of Tin under unipolar square wave electric field. J Electrochem Soc. 2013;160:D495–D500. doi: 10.1149/2.014311jes
  • Liao B, Chen Z, Qiu Q, et al. Inhibitory effect of cetyltrimethylammonium bromide on the electrochemical migration of tin in thin electrolyte layers containing chloride ions. Corros Sci. 2017;118:190–201. doi: 10.1016/j.corsci.2017.02.013
  • Liao B, Chen Z, Qiu Q, et al. Effect of citrate ions on the electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros Sci. 2016;112:393–401. doi: 10.1016/j.corsci.2016.08.003
  • Zhong X, Chen L, Hu J, et al. In situ study of the electrochemical migration of Tin under bipolar square wave voltage. J Electrochem Soc. 2017;164:D342–D347. doi: 10.1149/2.1491706jes
  • Huang H, Pan Z, Guo X, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer. Corros Sci. 2013;75:100–105. doi: 10.1016/j.corsci.2013.05.019
  • Huang H, Guo X, Zhang G, et al. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer. Corros Sci. 2011;53:3446–3449. doi: 10.1016/j.corsci.2011.04.017
  • Huang H, Pan Z, Guo X, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl− ion migration behaviour and dendrites growth under thin electrolyte layer. Trans Nonferrous Met Soc China. 2014;24:285–291. doi: 10.1016/S1003-6326(14)63059-4
  • Conseil-Gudla H, Jellesen MS, Ambat R. Printed circuit board surface finish and effects of chloride contamination, electric field, and humidity on corrosion reliability. J Electron Mater. 2017;46:817–825. doi: 10.1007/s11664-016-4974-7
  • Huang HL, Tian J, Zhang GA. Atmospheric corrosion behavior of Tin under an alternating current electric field. J Electron Mater. 2017;46:4359–4372. doi: 10.1007/s11664-017-5395-y
  • Huang H, Tian J. Effects of electric field and bias voltage on corrosion behavior of tin under a thin electrolyte layer. Microelectron Reliab. 2017;78:131–142. doi: 10.1016/j.microrel.2017.08.013
  • Huang HL, Bu FR, Tian J, et al. Influence of direct current electric field on corrosion behavior of Tin under a thin electrolyte layer. J Electron Mater. 2017;46:6936–6946. doi: 10.1007/s11664-017-5727-y
  • Arra M, Shangguan DK, Xie DJ, et al. Study of immersion silver and tin printed-circuit-board surface finishes in lead-free solder applications. J Electron Mater. 2004;33:977–990. doi: 10.1007/s11664-004-0025-x
  • Wang W, Choubey A, Azarian MH, et al. An assessment of immersion silver surface finish for lead-free electronics. J Electron Mater. 2009;38:815–827. doi: 10.1007/s11664-009-0761-z
  • Wiesinger R, Martina I, Kleber CH, et al. Influence of relative humidity and ozone on atmospheric silver corrosion. Corros Sci. 2013;77:69–76. doi: 10.1016/j.corsci.2013.07.028
  • Minzari D, Jellesen MS, Møller P, et al. Morphological study of silver corrosion in highly aggressive sulfur environments. Eng Fail Anal. 2011;18:2126–2136. doi: 10.1016/j.engfailanal.2011.07.003
  • Liang D, Allen HC, Frankel GS, et al. Effects of sodium chloride particles, ozone, UV, and relative humidity on atmospheric corrosion of silver. J Electrochem Soc. 2010;157:C146–C156. doi: 10.1149/1.3310812
  • Huo Y, Tan MY. Localised corrosion of cathodically protected pipeline steel under the effects of cyclic potential transients. Corros Eng Sci Technol. 2018;53:348–354. doi: 10.1080/1478422X.2018.1471250
  • Huo Y, Tan MY. Measuring and understanding the critical duration and amplitude of anodic transients. Corros Eng Sci Technol. 2018;53:65–72. doi: 10.1080/1478422X.2017.1386017
  • Tan Y, Liu T. Characterising localised corrosion inhibition by means of parameters measured by an electrochemically integrated multielectrode array. Corros Eng Sci Technol. 2014;49:23–31. doi: 10.1179/1743278213Y.0000000100
  • Huang H, Tian J, Zhang G, et al. The corrosion of X52 steel at an elbow of loop system based on array electrode technology. Mater Chem Phys. 2016;181:312–320. doi: 10.1016/j.matchemphys.2016.06.064
  • Tian J, Huang H, Pan Z, et al. Effect of flow velocity on corrosion behavior of AZ91D magnesium alloy at elbow of loop system. Trans Nonferrous Met Soc China. 2016;26:2857–2867. doi: 10.1016/S1003-6326(16)64414-X
  • Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study. Corros Sci. 1995;37:897–911. doi: 10.1016/0010-938X(95)00002-2
  • Graedel TE. Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc. 1992;139:1963–1970. doi: 10.1149/1.2221162
  • Cheng YL, Zhang Z, Cao FH, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corros Sci. 2004;46:1649–1667. doi: 10.1016/j.corsci.2003.10.005
  • Stratmann M, Streckel H, Kim KT, et al. On the atmospheric corrosion of metals which are covered with thin electrolyte layers – iii. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corros Sci. 1990;30:715–734. doi: 10.1016/0010-938X(90)90034-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.