Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 5
428
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of the corrosion resistance of an Al–Cu alloy and an Al–Cu–Li alloy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 402-412 | Received 15 Jan 2019, Accepted 02 Apr 2019, Published online: 14 Apr 2019

References

  • Mokaddem M, Volovitch P, Rechou F, et al. The anodic and cathodic dissolution of Al and Al–Cu–Mg alloy. Electrochim Acta. 2010;55:3779–3786. doi: 10.1016/j.electacta.2010.01.079
  • Zhao D, Sun J, Zhang L, et al. Corrosion behavior of rare earth cerium based conversion coating on aluminum alloy. J Rare Earths. 2010;28:371–374. doi: 10.1016/S1002-0721(10)60338-9
  • Fahrenholtz WG, O'keefe MJ, Zhou H, et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surf Coatings Technol. 2002;155:208–213. doi: 10.1016/S0257-8972(02)00062-2
  • Warner T. Recently-developed aluminium solutions for aerospace applications. Mater Sci Forum. 2006;519-521:1271–1278. doi: 10.4028/www.scientific.net/MSF.519-521.1271
  • Lequeu P, Smith KP, Daniélou A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate. J Mater Eng Perform. 2010;19:841–847. doi: 10.1007/s11665-009-9554-z
  • Ma Y, Zhou X, Thompson GE, et al. Anodic film formation on AA 2099-T8 aluminum alloy in tartaric–sulfuric acid. J Electrochem Soc. 2011;158:C17. doi: 10.1149/1.3523262
  • Ma Y, Zhou X, Huang W, et al. Localized corrosion in AA2099-T83 aluminum–lithium alloy: the role of intermetallic particles. Mater Chem Phys. 2015;161:201–210. doi: 10.1016/j.matchemphys.2015.05.037
  • De PS, Mishra RS, Baumann JA. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy. Acta Mater. 2011;59:5946–5960. doi: 10.1016/j.actamat.2011.06.003
  • Ma Y, Zhou X, Thompson GE, et al. Anodic film growth on Al–Li–Cu alloy AA2099-T8. Electrochim Acta. 2012;80:148–159. doi: 10.1016/j.electacta.2012.06.126
  • Li JF, Zheng ZQ, Jiang N, et al. Study on localized corrosion mechanism of 2195 Al–Li alloy in 4.0% NaCI solution (pH 6.5) using a three-electrode coupling system. Mater Corros. 2005;56:192–196. doi: 10.1002/maco.200403824
  • ASM International. ASM Handbook properties and selection: nonferrous alloys and special-purpose Materials. 1st ed. Vol. 2. American Society for Materials; 2001. p. 679–723.
  • Tavares SMO, dos Santos JF, de Castro PMST. Friction stir welded joints of Al-Li alloys for aeronautical applications: butt-joints and tailor welded blanks. Theor Appl Fract Mech. 2013;65:8–13. doi: 10.1016/j.tafmec.2013.05.002
  • Prasad NE, Gokhale AA, Wanhill RJH. Aluminum lithium alloys. 1st ed. Oxford, United Kindon: Butterworth-Heinemann; 2013. p. 27–58. 9780124016798.
  • Cho A. (12) United States Patent. 2007.
  • Salem HG, Lyons JS. Effect of equal channel angular extrusion on the microstructure and superplasticity of an Al–Li alloy. J Mater Eng Perform. 2002;11:384–391. doi: 10.1361/105994902770343908
  • Ghanbari E, Saatchi A, Lei X, et al. Passivity breakdown and pitting corrosion of Al–Li aerospace alloys. Corros Conf. 2017;1:1–15.
  • Buchheit Jr. G, Moran JP. Localized corrosion behavior of Alloy 2090 – the role of microstructural heterogeneity. Corrosion. 1990;46:610–617. doi: 10.5006/1.3585156
  • Kumai C, Kusinski J, Thomas G. Influence of aging at 200°C on the corrosion resistance of Al–Li and Al–Li–Cu alloys. Corros Sci. 1989;45:294–302. doi: 10.5006/1.3577857
  • Li JF, Liu PL, Chen YL, et al. Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2-3.8)Cu–(1.0-1.4)Li alloys. Trans Nonferrous Met Soc China English Ed. 2015;25:2103–2112. doi: 10.1016/S1003-6326(15)63821-3
  • Wenjie L, Qinglin P, Yunbin H, et al. Effect of aging on the mechanical properties and corrosion susceptibility of an Al–Cu–Li–Zr alloy containing Sc. Rare Met. 2008;27:146–152. doi: 10.1016/S1001-0521(08)60105-9
  • Ma Y, Zhou X, Liao Y, et al. Localised corrosion in AA 2099-T83 aluminium–lithium alloy: the role of grain orientation. Corros Sci. 2016;107:41–48. doi: 10.1016/j.corsci.2016.02.018
  • Ma Y, Zhou X, Thompson GE, et al. Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy. Corros Sci. 2011;53:4141–4151. doi: 10.1016/j.corsci.2011.08.023
  • Ma Y, Zhou X, Thompson GE, et al. Surface texture formed on AA2099 Al–Li–Cu alloy during alkaline etching. Corros Sci. 2013;66:292–299. doi: 10.1016/j.corsci.2012.09.032
  • Ma YE, Zhao Z, Liu B, et al. Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints. Mater Sci Eng A. 2013;569:41–47. doi: 10.1016/j.msea.2013.01.044
  • Guérin M, Alexis J, Andrieu E, et al. Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy. Corros Sci. 2016;102:291–300. doi: 10.1016/j.corsci.2015.10.020
  • Proton V, Alexis J, Andrieu E, et al. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium–copper–lithium alloy. Corros Sci. 2014;80:494–502. doi: 10.1016/j.corsci.2013.11.060
  • Donatus U, Terada M, Ospina CR, et al. On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour. Corros Sci. 2017;131:300–309. doi: 10.1016/j.corsci.2017.12.001
  • de Sousa Araujo JV, Donatus U, Queiroz FM, et al. On the severe localized corrosion susceptibility of the AA2198-T851 alloy. Corros Sci. 2018;133:132–140. doi: 10.1016/j.corsci.2018.01.028
  • Donatus U, Berbel LO, Costa I. Qualitative use of potentiodynamic polarization and anodic hydrogen evolution in the assessment of corrosion susceptibility in AA2198-T851 Al–Cu–Li alloy. Mater Corros. 2018;1:1–14. doi: 10.3390/cmd1010001
  • Donatus U, de Viveiros BVG, de Alencar MC, et al. Correlation between corrosion resistance, anodic hydrogen evolution and microhardness in friction stir weldment of AA2198 alloy. Mater Charact. 2018;144:99–112. doi: 10.1016/j.matchar.2018.07.004
  • Zhang W. Anisotropy of localized corrosion in AA2024-T3. Electrochem Solid State Lett. 1999;3:268. doi: 10.1149/1.1391121
  • Little DA, Connolly BJ, Scully JR. An electrochemical framework to explain the intergranular stress corrosion behavior in two Al–Cu–Mg–Ag alloys as a function of aging D.A. Corros Sci. 2007;49:347–372. doi: 10.1016/j.corsci.2006.04.024
  • Huang TS, Frankel GS. Kinetics of sharp intergranular corrosion fissures in AA7178. Corros Sci. 2007;49:858–876. doi: 10.1016/j.corsci.2006.04.015
  • Moreto JA, Marino CEB, Bose Filho WW, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication. Corros Sci. 2014;84:30–41. doi: 10.1016/j.corsci.2014.03.001
  • Guillaumin V, Mankowski G. Localized corrosion of 2024-T351 aluminium alloy in chloride media. Corros Sci. 1994;41:21–438.
  • Blanc C, Mankowski G. Pit propagation rate on the 2024 and 6056 aluminium alloys. Corros Sci. 1998;40:411–429. doi: 10.1016/S0010-938X(97)00147-9
  • Keddam M, Kuntz C, Takenouti H, et al. Exfoliation corrosion of aluminium alloys examined by electrode impedance. Electrochim Acta. 1997;42:87–97. doi: 10.1016/0013-4686(96)00170-3
  • Brown RH, Fink WL, Hunter MS. Measurement of irreversible potentials as a metallurgical research tool, Tans. AIME. 1941;143:115.
  • Burleigh TD, Rennick RC, Bovard FS. Corrosion potential for aluminum alloys measured by ASTM G 69. Corrosion. 1993;49:683. doi: 10.5006/1.3316100
  • Guérin M, Andrieu E, Odemer G, et al. Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al–Cu–Li alloy. Corros Sci. 2014;85:455–470. doi: 10.1016/j.corsci.2014.04.042
  • Hagyard T, Earl WB. Potential of aluminum in aqueous chloride solutions. J Electrochem Soc. 2007;114:694. doi: 10.1149/1.2426708
  • Liao CM, Olive JM, Gao M, et al. In-Situ monitoring of pitting corrosion in aluminum alloy 2024. Corrosion. 1998;54:451–458. doi: 10.5006/1.3284873
  • Boag A, Taylor RJ, Muster TH, et al. Stable pit formation on AA2024-T3 in a NaCl environment. Corros Sci. 2010;52:90–103. doi: 10.1016/j.corsci.2009.08.043
  • Glenn AM, Muster TH, Luo C, et al. Corrosion of AA2024-T3 Part III: propagation. Corros Sci. 2011;53:40–50. doi: 10.1016/j.corsci.2010.09.035
  • Ilevbare GO, Schneider O, Kelly RG, et al. In situ confocal laser scanning microscopy of AA 2024-T3. Corrosion metrology. J Electrochem Soc. 2004;151:453–464. doi: 10.1149/1.1764780
  • Buchheit RG. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J. Electrochem. Soc. 1997;144:2621. doi: 10.1149/1.1837874
  • Kelly RG, Scully JR, Shoesmith DW, et al. Electrochemical techniques in corrosion science and engineering. New York: Marcel Dekker; 2003. doi: 10.1016/s0013-4686(02)00768-5
  • Gao H, Li Q, Dai Y, et al. High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy. Corros Sci. 2010;52:1603–1609. doi: 10.1016/j.corsci.2010.01.033
  • Rosero-Navarro NC, Pellice SA, Durán A, et al. Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci. 2008;50:1283–1291. doi: 10.1016/j.corsci.2008.01.031
  • Zheludkevich ML, Yasakau KA, Poznyak SK, et al. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros Sci. 2005;47:3368–3383. doi: 10.1016/j.corsci.2005.05.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.