Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 54, 2019 - Issue 8
299
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion behaviour of low-cost Ti–4.5Al–xV–yFe alloys in sodium chloride and sulphuric acid solutions

ORCID Icon, , &
Pages 637-648 | Received 05 Apr 2019, Accepted 04 Aug 2019, Published online: 17 Aug 2019

References

  • Froes FH. The production of low-cost titanium powders. JOM. 1998;50:41–43. doi: 10.1007/s11837-998-0413-4
  • Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213:103–114. doi: 10.1016/0921-5093(96)10233-1
  • Donachie MJ. Titanium: a technical guide. 2nd ed. Novelty (OH): ASM International; 2000.
  • Faller K, Froes FH. The use of titanium in family automobiles: current trends. JOM. 2001;53:27–28. doi: 10.1007/s11837-001-0143-3
  • (Sam) Froes FH, Friedrich H, Kiese J, et al. Titanium in the family automobile: the cost challenge. JOM. 2004;56:40–44. doi: 10.1007/s11837-004-0144-0
  • Boyer RR. Titanium for aerospace: rationale and applications. Adv Perform Mater. 1995;2:349–368. doi: 10.1007/BF00705316
  • Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A. 1996;213:134–137. doi: 10.1016/0921-5093(96)10243-4
  • Gunawarman B, Niinomi M, Akahori T, et al. Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Mater Sci Eng C. 2005;25:304–311. doi: 10.1016/j.msec.2004.12.015
  • Jorge JRP, Barão VA, Delben JA, et al. Titanium in dentistry: historical development, state of the art and future perspectives. J Indian Prosthodont Soc. 2013;13:71–77. doi: 10.1007/s13191-012-0190-1
  • Dutta B, (Sam) Froes FH. The additive manufacturing (AM) of titanium alloys. Met Powder Rep. 2017;72:96–106. doi: 10.1016/j.mprp.2016.12.062
  • (Sam) Froes FH, Mashl SJ, Hebeisen JC, et al. The technologies of titanium powder metallurgy. JOM. 2004;56:46–48. doi: 10.1007/s11837-004-0252-x
  • Froes FHS, Gungor MN, Imam MA. Cost-affordable titanium: the component fabrication perspective. JOM. 2007;59:28–31. doi: 10.1007/s11837-007-0074-8
  • Leyens C, Peters M. Titanium and titanium alloys: fundamentals and application. Weinheim: WILEY-VCH; 2003.
  • Bertolini M, Shaw L, England L, et al. The FFC Cambridge process for production of low cost titanium and titanium powders. Key Eng Mater. 2010;436:75–83. doi: 10.4028/www.scientific.net/KEM.436.75
  • Zhu K, Gui N, Jiang T, et al. The development of the low-cost titanium alloy containing Cr and Mn alloying elements. Metall Mater Trans A. 2014;45:1761–1766. doi: 10.1007/s11661-013-2080-5
  • Bolzoni L, Ruiz-Navas EM, Gordo E. Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys. Mater Des. 2016;110:317–323. doi: 10.1016/j.matdes.2016.08.010
  • Fujii H, Takahashi K. Development of high performance Ti-Fe-Al alloy series. Nippon Steel Technical Rep. 2002;85:114–117.
  • Esteban PG, Ruiz-Navas EM, Bolzoni L, et al. Low-cost titanium alloys? Iron may hold the answers. Met Powder Rep. 2008;63:24–27. doi: 10.1016/S0026-0657(09)70040-2
  • Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys. Mater Sci Eng A. 1999;263:117–126. doi: 10.1016/S0921-5093(98)01169-1
  • Weston NS, Jackson M. FAST-forge − a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components. J Mater Process Technol. 2017;243:335–346. doi: 10.1016/j.jmatprotec.2016.12.013
  • Koike M, Guo Q, Brezner M, et al. Mechanical properties of cast Ti-Fe-O-N alloys. J ASTM Int. 2005;2:1–10. doi: 10.1520/JAI12781
  • Esteban PG, Bolzoni L, Ruiz-Navas EM, et al. PM processing and characterisation of Ti–7Fe low cost titanium alloys. Powder Metall. 2011;54:242–252. doi: 10.1179/174329009X457063
  • Fujii H, Fujisawa K, Ishil M, et al. Development of low-cost high-strength Ti-Fe-O-N alloy series. Nippon Steel Technical Rep. 2002;85:107–112.
  • Kuroda D, Kawasaki H, Yamamoto A, et al. Mechanical properties and microstructures of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys. Mater Sci Eng C. 2005;25:312–320. doi: 10.1016/j.msec.2005.04.004
  • Bodunrin MO, Chown LH, van der Merwe JW, et al. Corrosion behaviour of Ti-Al-xV-yFe experimental alloys in 3.5 wt% NaCl and 3.5 M H2SO4. Mater Corros. 2018;69:770–780. doi: 10.1002/maco.201709709
  • Bodunrin MO. Hot deformation and corrosion behaviour of low-cost α+β titanium alloys with aluminium, vanadium and iron addictions [PhD Thesis]. 2018.
  • Zhang L-C, Chen L-Y. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215. doi: 10.1002/adem.201801215
  • Polmear I, St. John D, Nie JF, et al. 7 – titanium alloysLight alloys. 5th ed. Oxford: Butterworth-Heinemann; 2017. p. 369–460.
  • Volodin VA, Kolachev BA, Moiseev VN, et al. On the possibility of replacing vanadium and molybdenum in alloy VT16 with iron. Met Sci Heat Treat. 2001;43:270–272. doi: 10.1023/A:1012777320127
  • Chen BY, Hwang KS. Sintered Ti–Fe alloys with in situ synthesized TiC dispersoids. Mater Sci Eng A. 2012;541:88–97. doi: 10.1016/j.msea.2012.02.007
  • Bolzoni L, Herraiz E, Ruiz-Navas EM, et al. Study of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel addition. Mater Des. 2014;60:628–636. doi: 10.1016/j.matdes.2014.04.019
  • Lütjering G, Williams JC. Engineering materials: titanium. Berlin: Springer; 2007.
  • AZOM. Titanium – surface treatments and cleaning. AZoM.com. 14-Feb-2002 [cited 26 Jul 2019]. [Online]. Available from: https://www.azom.com/ar ticle.aspx?ArticleID=1251.
  • Pohrelyuk IM, Tkachuk OV, Proskurnyak RV. Corrosion behaviour of Ti-6Al-4V alloy with nitride coatings in simulated body fluids at and. Int Sch Res Notices. 2013. [Online]. Available from: https://www.hindawi.com/journals/isrn/2013/241830/. [Accessed: 26-Jul-2019].
  • ASTM E 92 - 17. Standard test methods for vickers hardness and knoop hardness of metallic materials. West Conshohocken (PA): ASTM International; 2017.
  • Simbi DJ, Scully JC. The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium. Mater Lett. 1996;26(1):35–39. doi: 10.1016/0167-577X(95)00204-9
  • Crystal Clear. Casting a Crystal Clear™ 200 in a mould. [online] [cited 23-01-2019]. Available from: https://www.smooth-on.com/products/crystal-clear-200/.
  • Hee AC, Jamali SS, Martin PJ, et al. Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate. Surf Coat Technol. 2016;307:666–675. doi: 10.1016/j.surfcoat.2016.09.061
  • Akinlabi SA, Mashinini MP, Fatoba SO, et al. Characterization of corrosion behaviour of laser beam formed titanium alloy. IOP Conf Ser Mater Sci Eng. 2018;423(012174):1–8.
  • McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros Sci. 2005;47:3202–3215. doi: 10.1016/j.corsci.2005.05.046
  • Badea GE, Caraban A, Sebesan M, et al. Polarisation measurements used for corrosion rates determination. J Sustainable Energy. 2000;1(1.14):1–4.
  • ASTM G102-89. Standard test method for conducting potentiodynamic polarisation resistance measurements. West Conshohocken (PA): ASTM International; 1999. Available from: www.astm.org.
  • Fontana MG. Corrosion engineering. Boston (MA): McGraw-Hill; 1986.
  • Straumanis ME, Chen PC. The corrosion of titanium in acids—the rate of dissolution in sulfuric, hydrochloric, hydrobromic and hydroiodic acids. Corrosion. 1951;7:229–237. doi: 10.5006/0010-9312-7.7.229
  • Van Gils S, Melendres CA, Terryn H, et al. Use of in-situ spectroscopic ellipsometry to study aluminium/oxide surface modifications in chloride and sulfuric solutions. Thin Solid Films. 2004;742–746:455–456.
  • Dai N, Zhang LC, Zhang J, et al. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros Sci. 2016;102:484–489. doi: 10.1016/j.corsci.2015.10.041
  • Yu SY, Scully JR. Corrosion and passivity of Ti-13% Nb-13% Zr in comparison to other biomedical implant alloys. Corrosion. 1997;53:965–976. doi: 10.5006/1.3290281
  • Seah KHW, Thampuran R, Teoh SH. The influence of pore morphology on corrosion. Corros Sci. 1998;40:547–556. doi: 10.1016/S0010-938X(97)00152-2
  • Devilliers D, et al. Behaviour of titanium in sulphuric acid—application to DSAs. J New Mater Electrochem Syst. 2006;9:221–232.
  • Cotolan N, Pop A, Marconi D, et al. Corrosion behaviour of TiO2 -coated Ti-6Al-7Nb surfaces obtained by anodic oxidation in sulfuric or acetic acid. Mater Corros. 2015;66:635–642. doi: 10.1002/maco.201407687
  • Sul YT, Johansson CB, Jeong Y, et al. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329–346. doi: 10.1016/S1350-4533(01)00050-9
  • Atapour M, Pilchak A, Frankel GS, et al. Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures. Corrosion. 2011;66:065004–065004-9. doi: 10.5006/1.3452400
  • Atapour M, Pilchak AL, Shamanian M, et al. Corrosion behavior of Ti–8Al–1Mo–1V alloy compared to Ti–6Al–4V. Mater Des. 2011;32:1692–1696. doi: 10.1016/j.matdes.2010.09.009
  • Shoesmith DW, Noël JJ. 3.10 – Corrosion of Titanium and its Alloys. In: Cottis B., et al., editor. Shreir's Corrosion Vol. 3. Oxford: Elsevier; 2010. p. 2042–2052.
  • Ciszak C, Popa I, Brossard JM, et al. Nacl induced corrosion of Ti-6Al-4V alloy at high temperature. Corros Sci. 2016;110:91–104. doi: 10.1016/j.corsci.2016.04.016
  • Atapour M, Pilchak A, Frankel GS, et al. Corrosion behaviour of investment cast and friction stir processed Ti–6Al–4V. Corros Sci. 2010;52:3062–3069. doi: 10.1016/j.corsci.2010.05.026
  • Caprani A, Frayret JP. Behaviour of titanium in concentrated hydrochloric acid: dissolution-passivation mechanism. Electrochim Acta. 1979;24:835–842. doi: 10.1016/0013-4686(79)87006-1
  • Owen EL, May RC, Beck FH, et al. Dissolution of Ti-6Al-4V at cathodic potentials in 5N HCl. Corrosion. 1972;28:292–295. doi: 10.5006/0010-9312-28.8.292
  • Sinigaglia D, Taccani G, Vicentini B, et al. Electrochemical behavior of titanium and some titanium alloys under tensile stress in boiling sulfuric acid and acidic chloride solutions. J Electrochem Soc. 1978;125:1199–1204. doi: 10.1149/1.2131649
  • Fekry AM. The influence of chloride and sulphate ions on n behavior of Ti and Ti-6Al-4V alloy in oxalic acid. Electrochim Acta. 2009;54:3480–3489. doi: 10.1016/j.electacta.2008.12.060
  • Mogoda AS, Ahmad YH, Badawy WA. Corrosion behaviour of Ti–6Al–4 V alloy in concentrated hydrochloric and sulphuric acids. J Appl Electrochem. 2004;34:873–878. doi: 10.1023/B:JACH.0000040447.26482.bd
  • Blackwood DJ, Peter LM, Williams DE. Stability and open circuit breakdown of the passive oxide film on titanium. Electrochim Acta. 1988;33:1143–1149. doi: 10.1016/0013-4686(88)80206-8
  • Choubey A, Basu B, Balasubramaniam R. Electrochemical behavior of Ti-based alloys in simulated human body fluid environment. Trends Biomater Artif Organs. 2005;18:64–72.
  • Blackwood DJ, Peter LM. The influence of growth rate on the properties of anodic oxide films on titanium. Electrochim Acta. 1989;34:1505–1511. doi: 10.1016/0013-4686(89)87033-1
  • Lu J, Zhao Y, Niu H, et al. Electrochemical corrosion behavior and elasticity properties of Ti–6Al–xFe alloys for biomedical applications. Mater Sci Eng C. 2016;62:36–44. doi: 10.1016/j.msec.2016.01.019
  • Kuphasuk C, Oshida Y, Andres CJ, et al. Electrochemical corrosion of titanium and titanium-based alloys. J Prosthet Dent. 2001;85:195–202. doi: 10.1067/mpr.2001.113029
  • Aragon PJ, Hulbert SF. Corrosion of Ti-6Al-4V in simulated body fluids and bovine plasma. J Biomed Mater Res. 1972;6:155–164. doi: 10.1002/jbm.820060304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.