Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 55, 2020 - Issue 3
142
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of the electrochemically induced surface annealing on corrosion behaviors of 304L stainless steel in an acidic environment

&
Pages 217-223 | Received 17 Sep 2019, Accepted 03 Jan 2020, Published online: 14 Jan 2020

References

  • Hedberg YS, Odnevall WI. Metal release from stainless steel in biological environments: a review. Biointerphases. 2016;11: 018901-1-17. doi: 10.1116/1.4934628
  • Sumitomo H. Investigation of the development of cold-rolling and annealing textures in SUS304 austenitic stainless steel. J Iron Steel Inst Jpn. 1991;77:558–565. doi: 10.2355/tetsutohagane1955.77.4_558
  • Angel T. Formation of martensite in austenitic stainless steel. J Iron Steel Inst. 1954;177:165–174.
  • Ludwigson DC, Berger JA. Plastic behaviour of metastable austenitic stainless steels. J Iron Steel Inst. 1969;207:63–69.
  • Olson GB, Cohen M. Kinetics of strain-induced martensitic transformation. Metall Trans A. 1975;6:791–795. doi: 10.1007/BF02672301
  • Olson GB, Cohen M. Stress-assisted isothermal martensitic transformation: application to TRIP steels. Metall Trans A. 1982;13:1907–1914. doi: 10.1007/BF02645934
  • Huang GL, Matlock DK, Krauss G. Martensite formation, strain rate sensitivity and deformation behaviour of type 304 stainless steel sheet. Metall Trans A. 1989;20:1239–1246. doi: 10.1007/BF02647406
  • Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 1991;31:1431–1437. doi: 10.2355/isijinternational.31.1431
  • Takaki S, Tomimura K, Ueda S. Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel. ISIJ Int. 1994;34:522–527. doi: 10.2355/isijinternational.34.522
  • Petersen SF, Mataya MC, Matlock DK. The formability of austenitic stainless steels. J Mater. 1997;49:54–58.
  • Gleidys M, Asuncion B, Susana G, et al. Influence of the cold working induced martensite on the electrochemical behavior of AISI 304 stainless steel surfaces. J Mater Res Tech. 2019;8(1):1335–1346. doi: 10.1016/j.jmrt.2018.10.004
  • Gravier J, Vignal V, Bissey-Breston S. Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corr Sci. 2012;61:162–170. doi: 10.1016/j.corsci.2012.04.032
  • Xue L, Fei X, Dan W, et al. Effect of residual and external stress on corrosion behaviour of X80 pipeline steel in sulphate-reducing bacteria environment. Eng Fail Anal. 2018;91:275–290. doi: 10.1016/j.engfailanal.2018.04.016
  • Nazarov A, Vivier V, Thierry D, et al. Effect of mechanical stress on the properties of steel surfaces: scanning kelvin probe and local electrochemical impedance study. J Electrochem Soc. 2017;164:C66–C74. doi: 10.1149/2.1311702jes
  • Grabke HJ. Carburization, carbide formation, metal dusting, coking. J Mater Technol. 2002;36:297–305.
  • Babakr A, Habiby F. Lengthening, cracking and weld ability problems of Fe-Ni-Cr alloy tube. J Miner Mater Charact Eng. 2009;8:133–148.
  • Rashid MWA, Gakim M, Rosli ZM, et al. Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion. Int J Electrochem Sci. 2012;7:9465–9477.
  • Punburi P, Tareelap N. Post weld heat treatment to reduce intergranular corrosion susceptibility of dissimilar welds between austenitic 304 and ferritic 430 stainless steels. Proceedings of the 1st Mae Fah Luang University International Conference; Bangkok, Thailand; 2012. p. 1–9.
  • Shao G. Thermodynamic modeling of the Cr-Nb-Si system. J Intermet. 2005;13:69–78. doi: 10.1016/j.intermet.2004.06.003
  • Burstein GT, Hutchings IM, Sasaki K. Electrochemically induced annealing of stainless-steel surfaces. Nature. 2000;407:885–887. doi: 10.1038/35038040
  • Burstein GT, Sasaki K, Hutchings IM. Lattice changes generated by electrochemically induced surface annealing of austenitic stainless steel. Electrochem Solid State Lett. 2003;6:D13–D15. doi: 10.1149/1.1612013
  • Li Z, Qi J, Liu W. The effect of electrochemically induced annealing on the pitting resistance of metastable austenite stainless steel. Metall Mater Trans A. 2006;37:435–439. doi: 10.1007/s11661-006-0014-1
  • Chunchun X, Ke H, Yongxin W, et al. Deformation-induced martensite phase transition and its effect on pitting susceptibility for 1Cr18Ni9Ti stainless steel. J Chin Soc Corr Protect. 1996;16:47–52.
  • Gang H, Chunchun X, Xingsheng Z, et al. Effect of cold working on pitting susceptibility of 304 stainless steel. J Chin Soc Corr Protect. 2002;22:198–201.
  • Guangjie S, Yulin W, Yurong W, et al. Correlation between pit corrosive sensitivity of metastable austenite stainless steel and its content of ferromagnetic phases. Iron Steel. 1996;31:48–52.
  • Ruifen X, Chunchun X, Huiyong X, et al. Relation between deformation induced martensite and pitting susceptibility of 1Cr18Ni9Ti. Corr Sci Protect Technol. 1998;10:197–201.
  • Chunchun X, Ruifen X, Weizhen O, et al. EIS study of the effect of deformation induced α′ martensite on pitting sensibility of 1Cr18Ni9Ti stainless steel in acidic NaCl solution. Corr Sci Protect Technol. 1997;9:95–102.
  • Ruifen X, Chunchun X, Weizhen O, et al. Effect of the martensite phase transition of austenitic stainless steel on the corrosion resistance. J Beijing Univ Chem Technol. 1998;25:57–63.
  • Chunchun X, Xinsheng Z, Gang H, et al. Deformation induced martensite of cold worked stainless steel and its corrosion behaviors. Mater Protect. 2002;35:15–17.
  • Chunchun X, Weizhen O, Ruifen X. An investigation of the relationship between SCC susceptibility and ferromagnetic content of 1Cr18Ni9Ti stainless steel in chloride solution. J Chin Soc Corr Protect. 1997;17:73–76.
  • Chunchun X, Weizhen O, Baowen J, et al. The effect of martensite induced by deformation on stress corrosion cracking of 1Cr18Ni9Ti stainless steel. Corr Sci Protect Technol. 1996;8:267–270.
  • Maximilian S, Alexandar RZ, Olaga K, et al. A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology. Int J Electorchem Sci. 2018;13:1173–1226.
  • Durst J, Siebel A, Simon C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci. 2014;7:2255–2260. doi: 10.1039/C4EE00440J
  • Neyerlin KC, Gu W, Jorne J, et al. Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc. 2007;154:B631–B635. doi: 10.1149/1.2733987
  • Sheng W, Gasteiger HA, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes. J Electrochem Soc. 2010;157:B1529–B1536. doi: 10.1149/1.3483106
  • Sheng W, Zhuang Z, Gao M, et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun. 2015;6:1–6. doi: 10.1038/ncomms6848
  • Zheng J, Sheng W, Zhuang Z, et al. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv. 2016;2:1–8.
  • Brian CS, Sayed MH, Todd CH. NO2− activation and reduction to NO by a nonheme Fe(NO2)2 complex. J Am Chem Soc. 2014;136:10230–10233. doi: 10.1021/ja505236x
  • Maia LB, Moura JJG. How biology handles nitrite. Chem Rev. 2014;114:5273–5357. doi: 10.1021/cr400518y
  • Bhaduri B, Verma N. Preparation of asymmetrically distributed bimetal ceria CeO2 and copper (Cu) nanoparticles in nitrogen-doped activated carbon micro/nanofibers for the removal of nitric oxide (NO) by reduction. J Colloid Interface Sci. 2014;436:218–226. doi: 10.1016/j.jcis.2014.08.030
  • Xu WT, Zhou JC, Li H, et al. Microwave-assisted catalytic reduction of NO into N2 by activated carbon supported Mn2O3 at low temperature under O2 excess. Fuel Process Technol. 2014;127:1–6. doi: 10.1016/j.fuproc.2014.06.005
  • Zhang J, Zhang JY, Xu YF, et al. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge. Environ Sci Technol. 2014;48(19):11497–11503. doi: 10.1021/es502391y
  • Aarna I, Suuberg EM. The role of carbon monoxide in the NO-carbon reaction. Energy Fuels. 1999;13(6):1145–1153. doi: 10.1021/ef9900278
  • Lu CY, Wey MY. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas. Fuel Process Technol. 2007;88(6):557–567. doi: 10.1016/j.fuproc.2007.01.004
  • Goncalves F, Figueiredo JL. Development of carbon supported metal catalysts for the simultaneous reduction of NO and N2O. Appl Catal B. 2004;50(4):271–278. doi: 10.1016/j.apcatb.2004.01.014
  • Lu BT, Zeng Y, Pang X, et al. Effects of hydrogen and tensile stress on passivity of carbon steel. Corr Eng Sci Technol. 2015;50:186–190. doi: 10.1179/1743278215Y.0000000020
  • Simoes AMP, Ferreira MGS, Rondot B, et al. Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochemistry. J Electrochem Soc. 1990;137:82–87. doi: 10.1149/1.2086444
  • Jing W, Guo QQ, Hour YQ, et al. Catalytic role of vanadium (V) sulfate on activated carbon for SO2 oxidation and NH3-SCR of NO at low temperatures. Catal Commun. 2014;56:23–26. doi: 10.1016/j.catcom.2014.06.017
  • Wang JP, Yan Z, Liu LL, et al. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Appl Surf Sci. 2014;313:660–669. doi: 10.1016/j.apsusc.2014.06.043
  • Huang ZG, Hou YQ, Zhu ZP, et al. Study on the NO reduction by NH3 on a SO42−/AC catalyst at low temperature. Catal Commun. 2014;50:83–86. doi: 10.1016/j.catcom.2014.03.008
  • Liu QY, Liu ZY. Carbon supported vanadia for multi-pollutants removal from flue gas. Fuel. 2013;108:149–158. doi: 10.1016/j.fuel.2011.05.015
  • Xie W, Sun Z, Xiong Y, et al. Effects of surface chemical properties of activated coke on selective catalytic reduction of NO with NH3 over commercial coal-based activated coke. Int J Min Sci Technol. 2014;24:471–475. doi: 10.1016/j.ijmst.2014.05.009
  • Wang YL, Li XX, Zhan L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature. Ind Eng Chem Res. 2015;54(8):2274–2278. doi: 10.1021/ie504074h
  • Mehta Y, Trivedi S, Chandra K, et al. Miner effect of silicon on the corrosion behavior of powder-processed phosphoric irons. Mater Charact Eng. 2010;9:855–865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.