Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 55, 2020 - Issue 3
186
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement in intergranular corrosion resistance of the stabilised ultra-pure 430LX ferritic stainless steel by tin addition

, , , , , & show all
Pages 232-240 | Received 27 Aug 2019, Accepted 18 Jan 2020, Published online: 02 Feb 2020

References

  • You XM, Jiang ZH, Li HB. Ultra-pure ferritic stainless steels-grade, refining operation, and application. J Iron Steel Res. 2007;14:24–30. doi: 10.1016/S1006-706X(07)60053-3
  • Guilherme LH, Rovere CAD, Kuri SE, et al. Corrosion behaviour of a dissimilar joint TIG weld between austenitic AISI 316L and ferritic AISI 444 stainless steels. Weld Int. 2016;30:268–276. doi: 10.1080/09507116.2015.1096476
  • Kim JK, Kim YH, Sang HU, et al. Intergranular corrosion of Ti-stabilized 11 wt% Cr ferritic stainless steel for automotive exhaust systems. Corros Sci. 2009;51:2716–2723. doi: 10.1016/j.corsci.2009.07.008
  • Sun M, Yang YY, Luo M, et al. Investigation of susceptibility to intergranular corrosion of Tin-added austenitic stainless steel. Acta Metall Sin Lett. 2015;28:1183–1189. doi: 10.1007/s40195-015-0311-z
  • Yang YY, Liu YY, Cheng ML, et al. Enhancements of passive film and pitting resistance in chloride solution for 316LX austenitic stainless steel after Sn alloying. Acta Metall Sin Engl Lett. 2019;32:98–106. doi: 10.1007/s40195-018-0855-9
  • Hatano M, Matsuyama H, Ishimaru E, et al. Development of Sn-added low interstitial ferritic stainless steel sheet with high corrosion resistance and low Cr content. Mater Jpn. 2013;52:180–181. doi: 10.2320/materia.52.180
  • Han JP, Li Y, Jiang ZH, et al. Summary of the function of Sn in iron and steel. Adv Mater Res. 2013;773:406–411. doi: 10.4028/www.scientific.net/AMR.773.406
  • Yang B, Tong H, Liu Y. Effects of Sn microalloying on cold rolling and recrystallization textures and microstructure of a ferritic stainless steel. Mater Charact. 2018;137:142–150. doi: 10.1016/j.matchar.2018.01.022
  • Tong H, Yang B, Liu X, et al. Effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. Met Mater Int. 2018;24:789–801. doi: 10.1007/s12540-018-0098-3
  • Jiang ZH, Han JP, Li Y, et al. High temperature ductility and corrosion resistance property of novel tin-bearing economic 17Cr–xSn ferritic stainless steel. Ironmak Steelmak. 2015;42:504–511. doi: 10.1179/1743281214Y.0000000255
  • Han JP, Jiang ZH, Li Y. Investigation of corrosion resistance property and passivation film structure of tin containing stainless steel. Mater Res Innov. 2014;18:76–78. doi: 10.1179/1433075X13Y.0000000163
  • Zhan Z, Sun M, Jiang Y, et al. Effect of tin on the corrosion resistance of 16 Cr ferritic stainless steel in acidic solution and chloride-containing media. Int J Electrochem Sci. 2016;11:3963–3975. doi: 10.20964/110414
  • Zhang XJ, Liu ZY. Presented at IUMRS-ICA 2016, Qingdao, China, 20–24 October, 2016.
  • Park JH, Seo HS, Kim KY. Alloy design to prevent intergranular corrosion of low-Cr ferritic stainless steel with weak carbide formers. J Electrochem Soc. 2015;162:C412–C418. doi: 10.1149/2.1001508jes
  • Cheng P, Zhong N, Dai N, et al. Intergranular corrosion behavior and mechanism of the stabilized ultra-pure 430LX ferritic stainless steel. J Mater Sci Technol. 2019;35:1787–1796. doi: 10.1016/j.jmst.2019.03.021
  • Bond AP. Mechanisms of intergranular corrosion in ferritic stainless steels. Trans Metall Soc AIME. 1969;245:2127–2134.
  • Li XL, Ni YF, Jiang YM, et al. Intergranular corrosion of low Cr ferritic stainless steel 429 evaluated by the optimized double loop electrochemical potentiokinetic reactivation test. Adv Mater Sci Eng. 2015;2015:1–10.
  • Qiang S, Jiang L, Li J, et al. Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method. Acta Metall Sin. 2015;51:1349–1355.
  • Kim JK, Kim YH, Lee BH, et al. New findings on intergranular corrosion mechanism of stabilized stainless steels. Electrochim Acta. 2011;56:1701–1710. doi: 10.1016/j.electacta.2010.08.042
  • Devine TM, Ritter AM. Sensitization of 12 Wt Pct chromium, titanium-stabilized ferritic stainless steel. Metall Trans A. 1983;14:1721–1728. doi: 10.1007/BF02654400
  • Gates JD, Jago RA. Effect of nitrogen contamination on intergranular corrosion of stabilized ferritic stainless steels. Met Sci J. 1987;3:450–454.
  • Lakshminarayanan AK, Balasubramanian V. Use of DL-EPR test to assess sensitization resistance of AISI 409M grade ferritic stainless steel joints. J Mater Eng Perform. 2013;22:2293–2303. doi: 10.1007/s11665-013-0521-3
  • Scalise TC, Lopes de Oliveira MC, Sayeg IJ, et al. Sensitization behavior of type 409 ferritic stainless steel: confronting DL-EPR test and practice W of ASTM A763. J Mater Eng Perform. 2014;23:2164–2173. doi: 10.1007/s11665-014-1010-z
  • Deng B, Jiang YM, Xu JL, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros Sci. 2010;52:969–977. doi: 10.1016/j.corsci.2009.11.020
  • Gong J, Jiang YM, Deng B, et al. Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method. Electrochim Acta. 2010;55:5077–5083. doi: 10.1016/j.electacta.2010.03.086
  • Sidhom H, Amadou T, Braham C. Evaluation by the double loop electrochemical potentiokinetic reactivation test of aged ferritic stainless steel intergranular corrosion susceptibility. Metall Mater Trans Part A. 2010;41:3136–3150. doi: 10.1007/s11661-010-0383-3
  • ASTM A763-93(2009). Standard practices for detecting susceptibility to intergranular attack in ferritic stainless steels. West Conshohocken (PA): ASTM International; 2009.
  • Leiva-García R, Muñoz-Portero MJ, García-Antón J. Evaluation of alloy 146, 279, 900, and 926 sensitization to intergranular corrosion by means of electrochemical methods and image analysis. Corros Sci. 2009;51:2080–2091. doi: 10.1016/j.corsci.2009.05.036
  • Guo LQ, Lin MC, Qiao LJ, et al. Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy. Corros Sci. 2014;78:55–62. doi: 10.1016/j.corsci.2013.08.031
  • Luo H, Dong CF, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution. Appl Surf Sci. 2011;258:631–639. doi: 10.1016/j.apsusc.2011.06.077
  • Hong J, Han D, Tan H, et al. Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method. Corros Sci. 2013;68:249–255. doi: 10.1016/j.corsci.2012.11.024
  • Li JY, Fang F, Su DX, et al. Formability of Sn-containing ferrite stainless steel sheet. Procedia Eng. 2014;81:1271–1276. doi: 10.1016/j.proeng.2014.10.109
  • Wang R, Zheng Z, Zhou Q, et al. Effect of surface nanocrystallization on the sensitization and desensitization behavior of super304H stainless steel. Corros Sci. 2016;111:728–741. doi: 10.1016/j.corsci.2016.06.012
  • Hong L, Su H, Li B, et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment. Appl Surf Sci. 2018;439:232–239. doi: 10.1016/j.apsusc.2017.12.243
  • Sun M, Luo M, Lu C, et al. Effect of alloying tin on the corrosion characteristics of austenitic stainless steel in sulfuric acid and sodium chloride solutions. Acta Metall Sin. 2015;28:1089–1096. doi: 10.1007/s40195-015-0299-4
  • Jain S, Budiansky ND, Hudson JL. Surface spreading of intergranular corrosion on stainless steels. Corros Sci. 2010;52:873–885. doi: 10.1016/j.corsci.2009.11.006
  • House CI, Kelsall GH. Potential-pH diagrams for the Sn/H2O-CI system. Electrochim Acta. 1984;29:1459–1464. doi: 10.1016/0013-4686(84)87028-0
  • Kong D, Dong C, Ni X, et al. Insight into the mechanism of alloying elements (Sn, Be) effect on copper corrosion during long-term degradation in harsh marine environment. Appl Surf Sci. 2018;455:543–553. doi: 10.1016/j.apsusc.2018.06.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.