160
Views
0
CrossRef citations to date
0
Altmetric
A Celebration of the Career of Professor Brian Cherry: Corrosion Inhibition, Mechanisms and Sensing

The influence of Zn2+ on stress corrosion cracking severity in a highly sensitised Al–Mg alloy

ORCID Icon, &
Pages 331-340 | Received 07 Jul 2019, Accepted 17 Mar 2020, Published online: 23 Mar 2020

References

  • McMahon ME, Scully JR, Burns JT. Mitigation of intergranular cracking in Al-Mg Alloys via Zn-based electrode potential control in sodium chloride solution. Corrosion. 2019. doi:10.5006/3185.
  • Niederberger RB, Basil JL, Bedford GT. Corrosion and stress corrosion of 5000-series Al Alloys in marine environments. Corrosion. 1966;22:68–73. doi:10.5006/0010-9312-22.3.68.
  • Holroyd NJH, Scamans GM. Environmental degradation of marine aluminum alloys—past, present, and future. Corrosion. 2016;72:136–143. doi:10.5006/1927.
  • Dix EH, Anderson WA, Shumaker MB. Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion. Corrosion. 1959;15:55–62. doi: 10.5006/0010-9312-15.2.19
  • Davenport AJ, Yuan Y, Ambat R, et al. Intergranular corrosion and stress corrosion cracking of sensitised AA5182. Mater Sci Forum. 2006;519–521:641–646. doi:10.4028/www.scientific.net/MSF.519-521.641.
  • Jones RH. The influence of hydrogen on the stress-corrosion cracking of Low-strength Al-Mg alloys. J. Miner. Met. Mater. 2003;55:42–46. doi:10.1007/s11837-003-0225-5.
  • Seifi M, Holroyd NJH, Lewandowski JJ. Deformation rate and sensitization effects on environmentally assisted cracking of Al-Mg naval alloys. Corrosion. 2016;72:264–283. doi:10.5006/1949.
  • Scully JR, Young GA, Smith S. Hydrogen embrittlement of aluminum and aluminum-based alloys. In: RP Gangloff, BP Somerday, editors. Gaseous hydrogogen embrittlement of materials in energy technologies. 1st ed. Cambridge: Woodhead Publishing Limited; 2012. p. 707–768.
  • Raja VS, Shoji T. Stress corrosion cracking: Theory and practice. Cambridge: Woodhead Publishing Limited; 2011.
  • Lim MLC, Kelly RG, Scully JR. Overview of intergranular corrosion mechanisms, phenomenological observations, and modeling of AA5083. Corrosion. 2016;72:198–220. doi:10.5006/1818.
  • Holroyd NJH, Scamans GM. The role of magnesium during environment-sensitive fracture of aluminium alloys. Scr Metall Mater. 1985;19:945–946.
  • Baer DR, CF. Windsh Jr, Engelhard MH, et al. Influence of Mg on the corrosion of Al. J Vac Sci Technol. A. 2000;18:131–136. doi:10.1116/1.582129.
  • Jones RH, Vetrano JS, Windisch CF. Stress corrosion cracking of Al-Mg and Mg-Al alloys. Corrosion. 2004;60:1144–1154. doi:10.5006/1.3299228.
  • Vetrano JS, Williford RE, Bruemmer SM, et al. Influence of microstructure and thermal history on the corrosion susceptibility of AA 5083. In: Automotive alloys; 1997.
  • Vetrano Js, Danielson Mj, Baer Dr, et al. Microchemistry and microstructural aspects leading to stress corrosion cracking in AA5083. In: SK Das, editor. Automotive alloys. Wiley; 1999. p. 205–210. http://onlinelibrary.wiley.com/doi/10.1002/9781118787601.ch17/summary.
  • Jones RH, Baer DR, Danielson MJ, et al. Role of Mg in the stress corrosion cracking of an Al-Mg alloy. Metall Mater Trans A. 2001;32:1699–1711. doi:10.1007/s11661-001-0148-0.
  • McMahon ME, Steiner PJ, Lass AB, et al. The effect of temper and composition on the stress corrosion cracking of Al-Mg alloys. Corrosion. 2017;73:347–361. doi:10.5006/2317.
  • Birbilis N, Zhang R, Lim MLC, et al. Quantification of sensitization in AA5083-H131 via Imaging Ga-Embrittled fracture surfaces. Corrosion. 2013;69:396–402. doi:10.5006/0804.
  • Lim MLC, Scully JR, Kelly RG. Intergranular corrosion Penetration in an Al-Mg Alloy as a Function of electrochemical and Metallurgical conditions. Corrosion. 2013;69:35–47. doi:10.5006/0722.
  • Lim MLC, Scully JR, Kelly RG. Critical electrochemical conditions for intergranular corrosion in sensitized AA5083-H131. In: Department of Defense Virtual Corrosion Conference; 2013.
  • Jain S, Lim MLC, Hudson JL, et al. Spreading of intergranular corrosion on the surface of sensitized Al-4.4Mg alloys: a general finding. Corros Sci. 2012;59:136–147. doi:10.1016/j.corsci.2012.02.018.
  • Steiner MA, Agnew SR. Modeling sensitization of Al–Mg alloys via β-phase precipitation kinetics. Scr Mater. 2015;102:55–58. doi:10.1016/j.scriptamat.2015.02.012.
  • Golumbfskie WJ, Tran KT, Noland JM, et al. Survey of detection, mitigation, and repair technologies to address problems caused by sensitization of Al-Mg alloys on navy ships. Corrosion. 2016;72:314–328. doi:10.5006/1916.
  • Crane CB, Kelly R, Gangloff RP. Crack chemistry control of intergranular stress corrosion cracking in sensitized Al-Mg. Corrosion. 2016;72:242–263. doi:10.5006/1852.
  • Crane CB, Gangloff RP. Stress corrosion cracking of Al-Mg alloy 5083 sensitized at low temperature. Corrosion. 2016;72:221–241. doi:10.5006/1766.
  • McMahon ME, Steiner PJ, Lass AB, et al. The effect of loading orientation on intergranular stress corrosion cracking in Al-Mg alloys. Corrosion. 2017;73:713–723. doi:10.5006/2343.
  • McMahon ME, Scully JR, Burns JT. Mitigation of intergranular stress corrosion cracking in Al-Mg by electrochemical potential control. J Miner Met Mater. 2017;69:1389–1397. doi:10.1007/s11837-017-2362-2.
  • Steiner P, Burns J. Mechanistic studies of intergranular stress corrosion cracking in Al-Mg Alloys under atmospheric exposure conditions. Corrosion. 2018;74:1117–1131. doi:10.5006/2853.
  • Natishan PM, Grady WEO, Mccafferty E, et al. Chloride uptake by oxide covered aluminum as determined by X-Ray Photoelectron and X-Ray absorption spectroscopy. J Electrochem Soc. 1999;146:1737–1740. doi:10.1149/1.1391835.
  • McCafferty E. Sequence of steps in the pitting of aluminum by chloride ions. Corros Sci. 2003;45:1421–1438. doi:10.1016/S0010-938X(02)00231-7.
  • Foley RT. Localized corrosion of aluminum alloys – a review. Corrosion. 1986;42:277–288. doi:10.5006/1.3584905.
  • Ai J-H, Lim MLC, Scully JR. Effective hydrogen diffusion in aluminum alloy 5083-H131 as a function of orientation and degree of sensitization. Corrosion. 2013;69:1225–1239. doi:10.5006/0987.
  • Lim MLC, Matthews R, Oja M, et al. Model to predict intergranular corrosion propagation in three dimensions in AA5083-H131. Mater Des. 2016;96:131–142. doi: 10.1016/j.matdes.2016.01.089
  • Sakairi M, Otani K, Sasaki R. Electrochemical noise evaluation of metal cation effects on galvanic corrosion of aluminum alloys in low concentration of chloride ion containing solutions. Procedia Eng. 2014;86:589–596. doi:10.1016/j.proeng.2014.11.084.
  • Khedr MGA, Lashien AMS. The role of metal cations in the corrosion and corrosion inhibition of aluminum in aqueous solutions. Corros. Sci. 1992;33:137–151. doi: 10.1016/0010-938X(92)90023-V
  • Khedr M, Lashien A. Corrosion behavior of aluminum in the presence of accelerating metal cations and inhibition. J Electrochem Soc. 1989;136:968–972. doi:10.1149/1.2096895.
  • Buchheit RG, Guan H, Mahajanam S, et al. Active corrosion protection and corrosion sensing in chromate-free organic coatings. Prog Org Coatings. 2003;47:174–182. doi:10.1016/j.porgcoat.2003.08.003.
  • Mahajanam S, Buchheit RG. Characterization of inhibitor release from Zn-Al- [ V10 O28]6- Hydrotalcite pigments and corrosion protection from hydrotalcite-pigmented Epoxy coatings. Corrosion. 2008;64:230–240. doi: 10.5006/1.3278468
  • Liu C, Yang VA, Kelly RG. Inhibition of cathodic kinetics by Zn 2+ and Mg 2+ on AA7050-T7451. J Electrochem Soc. 2019;166:C134–C146. doi:10.1149/2.0551906jes.
  • Islam S. Effects of Zn 2 + concentration on the corrosion of Mild steel in NaCl aqueous solutions. J Electrochem Soc. 2019;166:83–90. doi:10.1149/2.1271902jes.
  • Tada E, Satoh S, Kaneko H. The spatial distribution of Zn2+during galvanic corrosion of a Zn/steel couple. Electrochim Acta. 2004;49:2279–2285. doi:10.1016/j.electacta.2004.01.008.
  • Volovitch P, Allely C, Ogle K. Understanding corrosion via corrosion product characterization: I. case study of the role of Mg alloying in Zn-Mg coating on steel. Corros Sci. 2009;51:1251–1262. doi:10.1016/j.corsci.2009.03.005.
  • Volovitch P, Vu TN, Allély C, et al. Understanding corrosion via corrosion product characterization: II. role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel. Corros Sci. 2011;53:2437–2445. doi:10.1016/j.corsci.2011.03.016.
  • Ogle K, Baudu V, Garrigues L, et al. Localized electrochemical methods applied to cut edge corrosion. J Electrochem Soc. 2000;147:3654. doi:10.1149/1.1393954.
  • Drazic DM, Vorkapic LZ. Inhibitory effects of manganeous, cadmium, and zinc ions on hydrogen evolution reaction and corrosion of iron in sulphuric acid solutions. Corros Sci. 1978;18:907–910. doi: 10.1016/0010-938X(78)90011-2
  • Zhang S, Shibata T, Haruna T. Inhibition effect of metal cations to intergranular stress corrosion cracking of sensitized type 304 stainless steel. Corros Sci. 2005;47:1049–1061. doi:10.1016/j.corsci.2004.06.014.
  • Niedrach LW, Stoddard WH. Technical Note: effect of zinc on corrosion films that form on stainless steel. Corrosion. 2011;42:546–549. doi:10.5006/1.3583066.
  • Angeliu TM, Andresen PL. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288°C water. Corrosion. 1996;52:28–35. doi:10.5006/1.3292092.
  • Gangloff RP, Slavik DC, Piascik S, et al. Direct current electrical potential measurement of the growth of small cracks. In: Larsen JM, Allison JE, editors. Small-crack test methods, American Society for Testing and Materials. Philadelphia (PA): American Society for Testing and Materials; 1992. p. 116–168.
  • Popernack A. Loading rate effects on the hydrogen enhanced cracking behavior of Ni- and Co-based superalloys for marine applications. Charlottesville (VA): University of Virginia; 2017.
  • Gangloff R, Ha H, Burns J, et al. Measurement and modeling of hydrogen environment-assisted cracking in Monel K-500. Metall Mater Trans A. 2014;45:3814–3834. doi: 10.1007/s11661-014-2324-z
  • Bumiller E. Intergranular corrosion in AA5xxx aluminum alloys with discontinuous precipitation at the grain boundaries. Charlottesville (VA): Univesity of Virginia; 2011.
  • Lim MLC. Intergranular corrosion propagation in sensitized Al-Mg alloys. Charlottesville (VA): The University of Virginia; 2016.
  • McMahon ME, Harris ZD, Scully JR, et al. The effect of electrode potential on stress corrosion cracking in highly sensitized Al-Mg alloys. Mater Sci Eng A. 2019;767:1–19. doi: 10.1016/j.msea.2019.138399
  • McMahon ME, Santucci Jr RJ, Scully JR. Advanced chemical stability diagrams to predict the formation of complex zinc compounds in chloride environment. RSC Adv. 2019;9:19905–19916. doi:10.1039/c9ra00228f.
  • Szklarska-Smialowska Z. Pitting corrosion of aluminum. Corros Sci. 1999;41:1743–1767. doi:10.1016/S0010-938X(99)00012-8.
  • Szklarska-Smialowska Z. Pitting and crevice corrosion. Houston (TX): NACE International; 2005.
  • Rodil E, Vera JH. Individual activity coefficients of chloride ions in aqueous solutions of MgCl2, CaCl2 and BaCl2 at 298.2 K. Fluid Phase Equilib. 2001;188:15–27. doi: 10.1016/S0378-3812(01)00523-4
  • Brown BF. Stress corrosion cracking in high strength alloys. In: JC Scully, editor. Theory of stress corrosion in alloys. Brussels: NATO Scientific Affairs Division; 1971. p. 186.
  • Buckley P, Placzankis B, Beatty J, et al. Characterization of the hydrogen embrittlement behavior of high-strength steels for army applications. In: Corrosion 94, NACE International, Houston, TX; 1994, Paper No. 57.
  • Harris ZD, Dolph JD, Pioszak GL, et al. The effect of microstructural variation on the hydrogen environment-assisted cracking of Monel K-500. Metall Mater Trans A Phys Metall Mater Sci. 2016: 1–23. doi:10.1007/s11661-016-3486-7.
  • Totsuka N, Szklarska-Smialowska Z. Effect of electrode potential on the hydrogen-induced IGSCC of alloy 600 in an aqueous solution at 350 C. Corrosion. 1987;43:734–738. doi:10.5006/1.3583860.
  • Burnell G, Hardie D, Parkins RN. Stress corrosion and hydrogen embrittlement of two precipitation hardening stainless steels. Br Corros. J. 1987;22:229–237. doi: 10.1179/000705987798271253
  • Das KB, Smith WG, Finger RW, et al. Hydrogen embrittlement of cathodically protected 15-5 PH stainless steel. In: Proceedings of the 2nd International Congress on Hydrogen in Metals. Oxford: Pergamon; 1977.
  • Tyler PS, Levy M, Raymond L. Investigation of the conditions for crack propagation and arrest under cathodic polarization by rising step load bend testing. Corrosion. 1991;47:82–87. doi:10.5006/1.3585857.
  • Kehler BA, Scully JR. Predicting the effect of applied potential on crack Tip hydrogen in Low-alloy martensitic steels. Corrosion. 2007;64:465–477. doi:10.5006/1.3278484.
  • Hartt WH, Kumria CC, Kessler RJ. Influence of potential, chlorides, pH, and precharging time on embrittlement of cathodically polarized prestressing steel. Corrosion. 1993;49:377–385. doi:10.5006/1.3316064.
  • Nishimura R. The effect of potential on stress corrosion cracking of type 316 and type 310 austenitic stainless steels. Corros Sci. 1993;34:1463–1473. doi:10.1016/0010-938X(93)90241-8.
  • Young LM, Young GA, Scully JR, et al. Aqueous environmental crack propagation in high-strength beta titanium alloys. Metall Mater Trans A. 1995;26:1257–1271. doi:10.1007/BF02670620.
  • Kolman DG, Scully JR. Understanding the potential and pH dependency of high-strength β-titanium alloy environmental crack initiation. Metall Mater Trans A Phys Metall Mater Sci. 1997;28:2645–2656. doi:10.1007/s11661-997-0021-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.