Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 56, 2021 - Issue 1
259
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Role of grinding induced surface residual stress on probability of stress corrosion cracks initiation in 316L austenitic stainless steel in 3.5% sodium chloride aqueous solution

, , &
Pages 81-92 | Received 13 Jan 2020, Accepted 17 Aug 2020, Published online: 27 Aug 2020

References

  • S.S.I. of the U. States, S.S.I. of N. America, N.D. Institute, A. Iron, S. Institute, Design Guidelines for the Selection and Use of Stainless Steel, Specialty Steel Industry of the United States; 1993.
  • Mayuzumi M, Arai T, Hide K. Chloride induced stress corrosion cracking of type 304 and 304L stainless steels in air. Zairyo-to-Kankyo. 2003;52:166–170. doi: 10.3323/jcorr1991.52.166
  • Alyousif OM, Nishimura R. The effect of test temperature on SCC behavior of austenitic stainless steels in boiling saturated magnesium chloride solution. Corros Sci. 2006;48:4283–4293. doi: 10.1016/j.corsci.2006.01.014
  • Alyousif OM, Nishimura R. The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions. Corros Sci. 2007;49:3040–3051. doi: 10.1016/j.corsci.2006.12.023
  • Revie RW. Uhlig’s corrosion handbook. Third. United States: John Wiley; 2011. doi:10.1002/9780470872864.
  • Perez N. Electrochemistry and corrosion science. United States: Springer; 2004. doi:10.1007/b118420.
  • Khatak H, Raj B. Corrosion of austenitic stainless steels: mechanism, mitigation and monitoring. Cambridge, United Kingdom: Elsevier; 2002. eBook ISBN: 9780857094018.
  • Tsubota M, Kanazawa Y, Inoue H. The effect of cold work on the SCC susceptibility of austenitic stainless steels, in: Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors: Proceedings and Symposium Discussions. Volume 1, 1995.
  • Brinksmeier E, Cammett JT, König W, et al. Residual stresses – measurement and causes in machining processes. CIRP Ann. 1982;31:491–510. doi: 10.1016/S0007-8506(07)60172-3
  • Jawahir IS, Brinksmeier E, M’saoubi R, et al. Surface integrity in material removal processes: recent advances. CIRP Ann. 2011;60:603–626. doi: 10.1016/j.cirp.2011.05.002
  • Yan L, Yang W, Jin H, et al. Analytical modelling of microstructure changes in the machining of 304 stainless steel. The Int J Adv Manuf Technol. 2012;58:45–55. doi: 10.1007/s00170-011-3384-5
  • Yan L, Yang W, Jin H, et al. Microstructure changes of machined surfaces on austenitic 304 stainless steel. World Acad Sci Eng Technol Int J Mech Mechatron Eng. 2011;5:1883–1887.
  • Katayama Y, Tsubota M, Saito Y. Effect of the plastic strain level quantified by EBSP method on the stress corrosion cracking of L-grade stainless steels. In: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System–Water Reactors, TMS, 2005: p. 31–36.
  • Ghosh S, Kain V. Microstructural changes in AISI 304L stainless steel due to surface machining: effect on its susceptibility to chloride stress corrosion cracking. J Nucl Mater. 2010. DOI:10.1016/j.jnucmat.2010.05.028.
  • Ishibashi R, Anzai H. Effect of chemical composition on SCC initiation behavior of surface cold worked austenitic stainless steels and the relation to surface microstructure. In: CD-Proceedings of EAC-ASIA December 18–19, Sendai; 2007.
  • Lee SM, Lee WG, Kim YH, et al. Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel. Corros Sci. 2012;63:404–409. doi: 10.1016/j.corsci.2012.06.031
  • Rokosz K, Hryniewicz T, Raaen S, et al. SEM/EDX, XPS, corrosion and surface roughness characterization of AISI 316L SS after electrochemical treatment in concentrated HNO3. Tehnički Vjesnik. 2015;22:125–131. doi: 10.17559/TV-20140211130812
  • Faller M, Buzzi S, Trzebiatowski Ov. Corrosion behaviour of glass-bead blasted stainless steel sheets and other sheets with dull surface finish in a chloride solution. Mater Corros. 2005;56:373–378. doi: 10.1002/maco.200403846
  • Acharyya SG, Khandelwal A, Kain V, et al. Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance. Mater Charact. 2012;72:68–76. doi: 10.1016/j.matchar.2012.07.008
  • Ghosh S, Rana VPS, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des. 2011. DOI:10.1016/j.matdes.2011.03.012.
  • Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Mater. 2007;55:29–42. doi: 10.1016/j.actamat.2006.08.037
  • Chen W, Van Boven G, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels – Part II: Crack dormancy. Acta Mater. 2007;55:43–53. doi: 10.1016/j.actamat.2006.07.021
  • Turnbull A, Mingard K, Lord JD, et al. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros Sci. 2011. DOI:10.1016/j.corsci.2011.06.020.
  • Zhang W, Fang K, Hu Y, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros Sci. 2016. DOI:10.1016/j.corsci.2016.03.008.
  • Tice DR. Influence of mechanical and environmental variables on crack growth in PWR pressure vessel steels. Int J Press Vessels Pip. 1986;24:139–173. doi: 10.1016/0308-0161(86)90085-2
  • A.B. 8, Gas Transmission and Distribution Piping Systems; 2010.
  • N. SP0204. Stress corrosion cracking (SCC) direct assessment methodology. Houston (TX): NACE; 2008.
  • Suter T, Webb EG, Böhni H, et al. Pit initiation on stainless steels in 1 M NaCl with and without mechanical stress. J Electrochem Soc. 2001;148:B174–B185. doi: 10.1149/1.1360204
  • Hojna A, Zimina M, Rozumova L. Effect of the surface grinding on the environmentally assisted crack initiation of 316 L steel in simulated pressurized water reactor water. J Nucl Eng Radiat Sci. 2019;5:30909. doi: 10.1115/1.4043099
  • Gutman EM, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel. Corros Sci. 1996;38:1141–1145. doi: 10.1016/0010-938X(96)00008-X
  • Fatoba OO, Leiva-Garcia R, Lishchuk SV, et al. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach. Corros Sci. 2018;137:83–97. doi: 10.1016/j.corsci.2018.03.029
  • Wang H, Han E-H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model. Corros Sci. 2016;103:305–311. doi: 10.1016/j.corsci.2015.11.034
  • Wang H, Han E-H. Simulation of metastable corrosion pit development under mechanical stress. Electrochim Acta. 2013;90:128–134. doi: 10.1016/j.electacta.2012.11.056
  • Chang L, Volpe L, Wang YL, et al. Effect of machining on stress corrosion crack initiation in warm-forged type 304L stainless steel in high temperature water. Acta Mater. 2019;165:203–214. doi: 10.1016/j.actamat.2018.11.046
  • Chang L, Burke MG, Scenini F. Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water. Corros Sci. 2018;138:54–65. doi: 10.1016/j.corsci.2018.04.003
  • Chang L, Duff J, Burke MG, et al. SCC initiation in the machined austenitic stainless steel 316L in simulated PWR primary water. In: Environmental Degradation of Materials in Nuclear Power Systems, Springer, 2017: p. 811–827.
  • Chang L, Burke MG, Scenini F. Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water. Scr Mater. 2019;164:1–5. doi: 10.1016/j.scriptamat.2019.01.032
  • Prevey PS. X-ray diffraction residual stress techniques, ASM International. ASM Handbook. 1986;10:380–392.
  • Fry AT, Lord JD. Measuring residual stresses in stainless steel – recent experiences within a VAMAS exercise. Powder Diffr. 2009;24:S41–S44. doi: 10.1154/1.3133146
  • Withers PJ, Bhadeshia H. Residual stress. Part 1 – measurement techniques. Mater Sci Technol. 2001;17:355–365. doi: 10.1179/026708301101509980
  • Fitzpatrick M, Fry A, Holdway P, et al. Measurement good practice guide No. 52, Determination of Residual Stresses by X-Ray Diffraction. 2005, 6.
  • Designation A. G59-97 (Reapproved 2014), Standard test method for conducting potentiodynamic polarization resistance measurements,© ASTM International, West Conshohocken, PA, USA. 2014.
  • G. ASTM. G 1-03, Standard practice for preparing, cleaning, and evaluating corrosion test specimens. Philadelphia (PA): American Society for Testing and Materials; 2003.
  • Rahimi S, Mehrez K, Marrow TJ. Effect of surface machining on intergranular stress corrosion cracking (IGSCC) in sensitised type 304 austenitic stainless steel, Corrosion Engineering. Sci Technol. 2016;51:383–391.
  • Lin L, Chao C, Macdonald D. A point defect model for anodic passive films: II. Chemical breakdown and pit initiation. J Electrochem Soc. 1981;128:1194. doi: 10.1149/1.2127592
  • Chao C, Lin L, Macdonald D. A point defect model for anodic passive films: I. Film growth kinetics. J Electrochem Soc. 1981;128:1187. doi: 10.1149/1.2127591
  • Wu H, Li C, Fang K, et al. Effect of machining on the stress corrosion cracking behavior in boiling magnesium chloride solution of austenitic stainless steel. Mater Corros. 2018;69:519–526. doi: 10.1002/maco.201709794
  • Fujii T, Tohgo K, Mori Y, et al. Crystallographic and mechanical investigation of intergranular stress corrosion crack initiation in austenitic stainless steel. Mater Sci Eng: A. 2019;751:160–170. doi:10.1016/j.msea.2019.02.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.