Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 56, 2021 - Issue 1
164
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Theoretical insight and experimental elucidation of desferrioxamine B from Bacillus sp. AS7 as a green corrosion inhibitor

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 93-101 | Received 07 May 2020, Accepted 13 Sep 2020, Published online: 22 Sep 2020

References

  • Duda Y, Govea-Rueda R, Galicia M, et al. Corrosion inhibitors: design, performance, and computer simulations. J Phys Chem B. 2005;109:22674–22684. doi: 10.1021/JP0522765
  • Lyon S. A natural solution to corrosion? Nature. 2004;427:406–407. doi: 10.1038/427406a
  • Marzorati S, Verotta L, Trasatti S, et al. Green corrosion inhibitors from natural sources and biomass wastes. Molecules. 2019;24:48. doi: 10.3390/molecules24010048
  • Hu K, Zhuang J, Ding J, et al. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corros Sci. 2017;125:68–76. doi: 10.1016/J.CORSCI.2017.06.004
  • Cote C, Rosas O, Basseguy R. Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion? Corros Sci. 2015;94:104–113. doi: 10.1016/J.CORSCI.2015.01.044
  • Rani BEA, Basu BBJ. Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros. 2012;2012:1–15. doi: 10.1155/2012/380217
  • Radojčić I, Berkovi1ć K, Kovač S, et al. Natural honey and black radish juice as tin corrosion inhibitors. Corros Sci. 2008;50:1498–1504. doi: 10.1016/J.CORSCI.2008.01.013
  • McCafferty E, McArdle JV. Corrosion inhibition of iron in acid solutions by biological siderophores. J Electrochem Soc. 1995;142:1447. doi: 10.1149/1.2048595
  • Charlop-Powers Z, Banik JJ, Owen JG, et al. Selective Enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis. ACS Chem Biol. 2013;8:138–143. doi: 10.1021/cb3004918
  • Neilands JB. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. doi: 10.1146/annurev.bi.50.070181.003435
  • Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270:26723–26726. doi: 10.1074/jbc.270.45.26723
  • Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000;54:881–941. doi: 10.1146/annurev.micro.54.1.881
  • Winkelmann G. Handbook of microbial iron chelates (1991). CRC Press; 2017. doi: 10.1201/9780203712368
  • Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans. 2002;30:691–696. doi: 10.1042/bst0300691
  • Haag H, Hantke K, Drechsel H, et al. Purification of yersiniabactin: a siderophore and possible virulence factor of Yersinia enterocolitica. J Gen Microbiol. 1993;139:2159–2165. doi: 10.1099/00221287-139-9-2159
  • Drechsel H, Tschierske M, Thieken A, et al. The carboxylate type siderophore rhizoferrin and its analogs produced by directed fermentation. J Ind Microbiol. 1995;14:105–112. doi: 10.1007/BF01569891
  • Meyer J-M, Geoffroy VA, Baida N, et al. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol. 2002;68:2745–2753. doi: 10.1128/AEM.68.6.2745-2753.2002
  • Roberts AA, Schultz AW, Kersten RD, et al. Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores. FEMS Microbiol Lett. 2012;335:95–103. doi: 10.1111/j.1574-6968.2012.02641.x
  • Wang W, Qiu Z, Tan H, et al. Siderophore production by actinobacteria. BioMetals. 2014;27:623–631. doi: 10.1007/s10534-014-9739-2
  • Essen SA, Johnsson A, Bylund D, et al. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol. 2007;73:5857–5864. doi: 10.1128/AEM.00072-07
  • Smits THM, Duffy B. Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch Microbiol. 2011;193:693–699. doi: 10.1007/s00203-011-0739-0
  • Balado M, Souto A, Vences A, et al. Two catechol siderophores, acinetobactin and amonabactin, are simultaneously produced by Aeromonas salmonicida subsp. salmonicida sharing part of the biosynthetic pathway. ACS Chem Biol. 2015;10:2850–2860. doi: 10.1021/acschembio.5b00624
  • Wyckoff EE, Allred BE, Raymond KN, et al. Catechol siderophore transport by Vibrio cholerae. J Bacteriol. 2015;197:2840–2849. doi: 10.1128/JB.00417-15
  • Thieken A, Winkelmann G. Rhizoferrin: a complexone type siderophore of the mocorales and entomophthorales (Zygomycetes). FEMS Microbiol Lett. 1992;94:37–41. doi: 10.1111/j.1574-6968.1992.tb05285.x
  • Drechsel H, Freund S, Nicholson G, et al. Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. Biometals. 1993;6:185–192. doi: 10.1007/BF00205858
  • Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol. 2004;311:1–9. doi: 10.1016/j.jembe.2003.12.028
  • Accelrys.com, Version 7.0, Accelrys Software Inc., (2012).
  • Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soci, Perkin Trans. 1993;2(5):799–805. doi: 10.1039/P29930000799
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005
  • Dolg M, Wedig U, Stoll H, et al. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys. 1987;86:866. doi: 10.1063/1.452288
  • Bergner A, Dolg M, Küchle W, et al. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys. 1993;80:1431–1441. doi: 10.1080/00268979300103121
  • Pérez-Miranda S, Cabirol N, George-Téllez R, et al. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70:127–131. doi: 10.1016/j.mimet.2007.03.023
  • Forney L, Zhou X, Brown C. Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol. 2004;7:210–220. doi: 10.1016/j.mib.2004.04.015
  • Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56. doi: 10.1016/0003-2697(87)90612-9
  • NACE 1D182 - Wheel test method used for evaluation of film-persistent corrosion inhibitors for oilfield applications / Engineering 360 (2017). [cited 2020 May 5]. Available from: https://standards.globalspec.com/std/10196481/nace-1d182
  • ASTM G31 - 72(2004) Standard practice for laboratory immersion corrosion testing of metals (2004). [cited 2020 May 5]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/G31-72R04.htm
  • ASTM G1 - 03(2017)e1 Standard practice for preparing, cleaning, and evaluating corrosion test specimens (2017). [cited 2020 May 5]. Available from: https://www.astm.org/Standards/G1
  • Stintzi KN, Raymond A. Molecular and cellular iron transport. New York: Marcel Dekker; 2001.
  • Bulich AA, Tung KT, Scheibner G The luminescent bacteria toxicity test: Its potential as an in vitro alternative. J Biolumin Chemilumin. 1990;5:71–77. doi: 10.1002/bio.1170050202
  • Nendza M. QSARs of bioconcentration - Validity assessment of log P/log BCF correlations. In Nagel R, Loskill R, editors. Bioaccumulation in aquatic systems. Weinheim: VCH; 1991. p. 43–66. doi: 10.13140/2.1.1837.5364
  • Ramachandran S, Tsai B-L, Blanco M, et al. Atomistic simulations of oleic imidazolines bound to ferric clusters. J Phys Chem A. 1997;101:83–89. doi: 10.1021/JP962041G
  • Zamudio-Rivera JL, Estrada LS, Benavides A, et al. Control de la corrosión de acero al carbón en ambientes de ácido sulfhídrico por 1-(2-hidroxietil)-2-alquil-imidazolinas y sus correspondientes precursores amídicos. Revista de la Sociedad Química de México. 2002;46:335–340.
  • Qiu G, Xiao Q, Hu Y, et al. Theoretical study of the surface energy and electronic structure of pyrite FeS2 (100) using a total-energy pseudopotential method, CASTEP. J Colloid Interf Sci. 2004;270:127–132. doi: 10.1016/j.jcis.2003.08.028
  • Wang D, Li S, Ying Y, et al. Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corros Sci. 1999;41:1911–1919. doi: 10.1016/S0010-938X(99)00027-X
  • Alagta A, Felhösi I, Bertoti I, et al. Corrosion protection properties of hydroxamic acid self-assembled monolayer on carbon steel. Corros Sci. 2008;50:1644–1649. doi: 10.1016/J.CORSCI.2008.02.008
  • Gece G, Bilgiç S. A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corros Sci. 2010;52:3304–3308. doi: 10.1016/J.CORSCI.2010.06.005
  • Shehata A, Korshed OM, Attia LA. Corrosion inhibitors, principles and recent applications. London: IntechOpen, InTech; 2018; doi: 10.5772/intechopen.70101
  • Demange P, Bateman A, Dell A, et al. Structure of azotobactin D, a siderophore of Azotobacter vinelandii strain D (CCM 289). Biochemistry. 1988;27:2745–2752. doi: 10.1021/bi00408a014
  • Borgias B, Hugi AD, Raymond KN. Isomerization and solution structures of desferrioxamine B complexes of aluminum(3+) and gallium(3+). Inorg Chem. 1989;28:3538–3545. doi: 10.1021/ic00317a029
  • Barona-Gómez F, Wong U, Giannakopulos AE, et al. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc. 2004;126:16282–16283. DOI:10.1021/JA045774 K doi: 10.1021/ja045774k
  • BLAST: Basic Local Alignment Search Tool. [cited 2020 May 5]. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi
  • Zawadzka AM, Abergel RJ, Nichiporuk R, et al. Siderophore-mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin. Biochemistry. 2009;48:3645–3657. doi: 10.1021/bi8018674
  • Hotta K, Kim C-Y, Fox DT, et al. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology. 2010;156:1918–1925. doi: 10.1099/mic.0.039404-0
  • Wilson MK, Abergel RJ, Raymond KN, et al. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun. 2006;348:320–325. doi: 10.1016/j.bbrc.2006.07.055
  • Grandchamp GM, Caro L, Shank EA. Pirated siderophores promote sporulation in Bacillus subtilis. Appl Environ Microbiol. 2017;83:e03293–16. doi: 10.1128/AEM.03293-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.