Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 57, 2022 - Issue 3
149
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Negative effect of Hf and Zr co-doping on alumina film growth of nickel-aluminium single-crystals during thermal cyclic oxidation

ORCID Icon, , &
Pages 214-222 | Received 06 Aug 2021, Accepted 02 Dec 2021, Published online: 21 Dec 2021

References

  • Hada S, Tsukagoshi K, Masada J, et al. Test results of the world’s first 1600 °C J-series gas turbine. Mitsubishi Heavy Ind Tech Rev. 2012;49(1):18–23.
  • Fleischmann E, Miller MK, Affeldt E, et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys. Acta Mater. 2015;87(1):350–356.
  • Vassen R, Jarligo MO, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol. 2010;205(4):938–942.
  • Pomeroy MJ. Coatings for gas turbine materials and long term stability issues. Mater Des. 2005;26(3):223–231.
  • Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296:280–284.
  • Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315–348.
  • Clarke DR, Phillpot SR. Thermal barrier coating materials. Mater Today. 2005;8(6):22–29.
  • Chen WF, He LM, Guo Y, et al. Effects of reactive element oxides on the isothermal oxidation of β-NiAl coatings fabricated by spark plasma sintering. Surf Coat Technol. 2019;357:322–331.
  • Guo HB, Cui YJ, Peng H, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy. Corros Sci. 2010;52(4):1440–1446.
  • Oquab D, Monceau D. In-situ SEM study of cavity growth during high temperature oxidation of β-(Ni,Pd)Al. Scr Mater. 2001;44(12):2741–2746.
  • Cao XZ, He J, Chen H, et al. The formation mechanisms of HfO2 located in different positions of oxide scales on Ni-Al alloys. Corros Sci. 2020;167:108481.
  • Hou PY, Priimak K. Interfacial segregation, pore formation, and scale adhesion on NiAl alloys. Oxid Met. 2005;63(1/2):113–130.
  • Dryepondt S, Turan JC, Lance MJ, et al. 3D microscopy to assess the effect of high temperature cyclic oxidation on the deformation of cast and ODS FeCrAlY alloys. Oxid Met. 2019;91(3/4):327–347.
  • Yan K, Guo HB, Gong SK. High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres. Corros Sci. 2014;83:335–342.
  • Guo HB, Wang D, Peng H, et al. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200°C. Corros Sci. 2014;78:369–377.
  • Lu JT, Zhu SL, Wang FH. Cyclic oxidation and hot corrosion behavior of Y/Cr-modified aluminide coatings prepared by a hybrid slurry/pack cementation process. Oxid Met. 2011;76(1/2):67–82.
  • Hamadi S, Bacos M-P, Poulain M, et al. Oxidation resistance of a Zr-doped NiAl coating thermochemically deposited on a nickel-based superalloy. Surf Coat Technol. 2009;204(6/7):756–760.
  • Pint BA, Schneibel JH. The effect of carbon and reactive element dopants on oxidation lifetime of FeAl. Scr Mater. 2005;52(12):1199–1204.
  • Barrett CA. Effect of 0.1 at.% zirconium on the cyclic oxidation resistance of β-NiAl. Oxid Met. 1988;30(5/6):361–390.
  • Gesmundo F, Hou PY. Analysis of pore formation at oxide-alloy Interfaces–II: theoretical treatment of vacancy condensation for immobile interfaces. Oxid Met. 2003;59(1):63–81.
  • Xu CH, Gao W, Li S. Oxidation behaviour of FeAl intermetallics–the effect of Y on the scale spallation resistance. Corros Sci. 2001;43(4):671–688.
  • Christensen RJ, Tolpygo VK, Clarke DR. The influence of the reactive element yttrium on the stress in alumina scales formed by oxidation. Acta Mater. 1997;45(4):1761–1766.
  • Golightly FA, Stott FH, Wood GC. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy. Oxid Met. 1976;10:163–187.
  • Saldaña JM, Schulz U, Rodríguez GCM, et al. Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems. Surf Coat Technol. 2018;335:41–51.
  • Liu T, Wang CX, Shen HL, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys. Corros Sci. 2013;76:310–316.
  • Li DQ, Zhou LX, Zhang J, et al. Enhanced alumina film adhesion of Hf/Y-doped iron–aluminum alloys during high-temperature oxidation: a new observation. Rare Met. 2019;38(9):877–884.
  • Carling KM, Carter EA. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface. Acta Mater. 2007;55(8):2791–2803.
  • Prescott R, Mitchell DF, Graham MJ, et al. Oxidation mechanisms of β-NiAl + Zr determined by SIMS. Corros Sci. 1995;37(9):1341–1364.
  • Pint BA, Martin JR, Hobbs LW. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3. Oxid Met. 1993;39(3/4):167–195.
  • Pint BA, Unocic KA. Ionic segregation on grain boundaries in thermally grown alumina scales. Mater High Temp. 2012;29(3):257–263.
  • Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met. 1996;45(1/2):1–37.
  • Lan H, Zhang WG, Yang ZG. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co,Ni)-based alloy. J Rare Earths. 2012;30(9):928–933.
  • He J, Peng H, Gong SK, et al. Synergistic effect of reactive element co-doping in two-phase (γ’ + β) Ni-Al alloys. Corros Sci. 2017;120:130–138.
  • Heuer AH, Reddy A, Hovis DB, et al. The effect of surface orientation on oxidation-induced growth strains in single crystal NiAl: an in situ synchrotron study. Scr Mater. 2006;54:1907–1912.
  • Guo JT, Xu CM. Effect of NiAl microcrystalline coating on the high-temperature oxidation behavior of NiAl-28Cr-5Mo-1Hf. Oxid Met. 2002;58(5/6):457–468.
  • Locci IE, Dickerson RM, Garg A, et al. Microstructure and phase stability of single crystal NiAl alloyed with Hf and Zr. J Mater Res. 1996;11(12):3024–3038.
  • Guo HB, Li DQ, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200°C. Corros Sci. 2014;88:197–208.
  • Li DQ, Guo HB, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 °C. Corros Sci. 2013;66:125–135.
  • Monceau D, Pieraggi B. Determination of parabolic rate constants from a local analysis of mass-gain curves. Oxid Met. 1998;50(5/6):477–493.
  • Pint BA, Hobbs LW. The oxidation behavior of Y2O3-dispersed β-NiAl. Oxid Met. 2004;61(3/4):273–292.
  • Heuerw AH, Hovis DB, Smialek JL, et al. Alumina scale formation: a new perspective. J Am Ceram Soc. 2011;94(S1):s146–s153.
  • Kulkarni KN. Diffusion in B2 NiAl and FeAl intermetallics and their alloys. Diff Found. 2017;13:98–135.
  • Marino KA, Carter EA. The effect of platinum on Al diffusion kinetics in β-NiAl: implications for thermal barrier coating lifetime. Acta Mater. 2010;58(7):2726–2737.
  • Marino KA, Carter EA. The effect of platinum on diffusion kinetics in β-NiAl: implications for thermal barrier coating lifetimes. ChemPhysChem. 2009;10(1):226–235.
  • Marino KA, Carter EA. First-principles characterization of Ni diffusion kinetics in β-NiAl. Phys Rev B. 2008;78(18):184105.
  • Li S, Xu MM, Zhang CY, et al. Co-doping effect of Hf and Y on improving cyclic oxidation behavior of (Ni, Pt)Al coating at 1150 °C. Corros Sci. 2021;178:109093.
  • Yang JC, Schumann E, Levin I, et al. Transient oxidation of NiAl. Acta Mater. 1998;46(6):2195–2201.
  • Grabke HJ. Oxidation of NiAl and FeAl. Intermetallics. 1999;7(10):1153–1158.
  • Peng X, Li T, Pan WP. Oxidation of a La2O3-modified aluminide coatings. Scr Mater. 2001;44(7):1033–1038.
  • Janda D, Fietzek H, Galetz M, et al. The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys. Intermetallics. 2013;41:51–57.
  • Pint BA, Treska M, Hobbs LW. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl. Oxid Met. 1997;47(1/2):1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.