Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 57, 2022 - Issue 3
4,737
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Monitoring corrosion rates with ER-probes – a critical assessment based on experiments and numerical modelling

ORCID Icon & ORCID Icon
Pages 254-268 | Received 18 Feb 2022, Accepted 10 Mar 2022, Published online: 25 Mar 2022

References

  • Yang L. Techniques for corrosion monitoring. Cambridge: Woodhead Publishing; 2020. 620p.
  • Bertolini L, Elsener B, Pedeferri P, et al. Corrosion of steel in concrete: prevention, diagnosis, repair. Weinheim (Germany): Wiley; 2013.
  • Pedeferri P, Ormellese M. Corrosion science and engineering. Cham (Switzerland): Springer; 2018.
  • McKenzie M, Vassie PR. Use of weight loss coupons and electrical resistance probes in atmospheric corrosion tests. Br Corros J. 1985;20:117–124.
  • Lorenz WJ, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corros Sci. 1981;21:647–672.
  • Andrade C, Alonso C. Corrosion rate monitoring in the laboratory and on-site. Constr Build Mater. 1996;10:315–328.
  • Kelly RG, Scully JR, Shoesmith D, et al. Electrochemical techniques in corrosion science and engineering. New York: CRC Press; 2002. 442p.
  • Frankel GS. Electrochemical techniques in corrosion: status, limitations, and needs. J ASTM Int. 2008;5:1–27.
  • Geary AL. Electrochemical Polarization. J Electrochem Soc. 1957;8.
  • Brossia CS. Electrical resistance techniques. In: Techniques for corrosion monitoring. Duxford (UK): Elsevier; 2021. p. 267–284. https://doi.org/https://doi.org/10.1016/B978-0-08-103003-5.00011-4
  • Cai J-P, Lyon SB. A mechanistic study of initial atmospheric corrosion kinetics using electrical resistance sensors. Corros Sci. 2005;47:2956–2973.
  • Cooper G. In: G Moran, P Labine, editors. Corrosion monitoring in industrial plants using nondestructive testing and electrochemical methods. Sensing Probes and Instruments for Electrochemical and Electrical Resistance Corrosion Monitoring. ASTM International; 1986. p. 237–237–14. http://www.astm.org/doiLink.cgi?STP17449S.
  • Li S, Jung S, Park K, et al. Kinetic study on corrosion of steel in soil environments using electrical resistance sensor technique. Mater Chem Phys. 2007;103:9–13.
  • Li S, Kim Y-G, Jung S, et al. Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sens Actuators B. 2007;120:368–377.
  • Li Z, Fu D, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion. Materials. 2019;12:1065.
  • Kouril M, Prosek T, Scheffel B, et al. High sensitivity electrical resistance sensors for indoor corrosion monitoring. Corros Eng Sci Technol. 2013;48:282–287.
  • Kouril M, Prosek T, Scheffel B, et al. Corrosion monitoring in archives by the electrical resistance technique. J Cult Herit. 2014;15:99–103.
  • Denzine AF, Reading MS. A critical comparison of corrosion monitoring techniques used in industrial applications. Corrosion. 1997;97.
  • Shukla PK, DeWitt J, Krissa LJ, et al. Monitoring Effectiveness of Vapor Corrosion Inhibitors for Tank Bottom Corrosion Using Electrical Resistance Probes and Coupons. NACE International Corrosion Conference proceedings; 2019. p. 1–10.
  • Whited T, Yu XA, Tems R. Mitigating soil-side corrosion on crude oil tank bottoms using volatile corrosion inhibitors. Corrosion. 2013;2013:1–12. Paper No. 2242.
  • Gartner N, Kosec T, Legat A. Monitoring the corrosion of steel in concrete exposed to a marine environment. Materials. 2020;13:407.
  • Legat A. Monitoring of steel corrosion in concrete by electrode arrays and electrical resistance probes. Electrochim Acta. 2007;52:7590–7598.
  • Jansen S, van Burgel M, Gerritse J, et al. Cathodic protection and MIC-effects of local electrochemistry. CORROSION 2017; 2017.
  • Junker A, Møller P, Nielsen LV. Effect of chemical environment and PH on AC corrosion of cathodically protected structures. NACE International Corrosion Conference proceedings. NACE International; 2017. p. 1–14.
  • Khan NA. Use of ER soil corrosion probes to determine the effectiveness of cathodic protection. CORROSION 2002, OnePetro; 2002.
  • Song H-S, Kho Y-T, Kim Y-G, et al. Competition of AC and DC current in AC corrosion under cathodic protection. CORROSION 2002, OnePetro;2002.
  • Gunars Bracs EB, Orchard DF. Use of electrical resistance probes in tracing moisture permeation through concrete. ACI J Proc. 1970;67. https://doi.org/https://doi.org/10.14359/7302.
  • Bell GE, Moore CG, Williams S. Development and application of ductile iron pipe electrical resistance probes for monitoring underground external pipeline corrosion. CORROSION 2007, OnePetro; 2007.
  • Jarragh A, Al-Sulaiman S, Khuraibut Y, et al. Microbiologically influenced corrosion by general aerobic and anaerobic bacteria in oil & gas separators. CORROSION 2014, OnePetro; 2014.
  • Liu L, Xu Y, Xu C, et al. Detecting and monitoring erosion-corrosion using ring pair electrical resistance sensor in conjunction with electrochemical measurements. Wear. 2019;428–429:328–339.
  • Knudsen KB. Pyeis: a Python-based electrochemical impedance spectroscopy analyzer and simulator. Electrochem Soc. 2019:1937–1937.
  • Buchanan RA, Stansbury EE. Handbook of environmental degradation of materials. Elsevier; 2012. p. 87–125. https://linkinghub.elsevier.com/retrieve/pii/B9781437734553000043.
  • Peter Atkins P, De Paula J. Atkins’ physical chemistry. Oxford: OUP; 2014.
  • Austin J. Heat capacity of iron – a review. Ind Eng Chem. 1932;24:1225–1235.
  • Deltombe E, Pourbaix M. Equilibrium potential-PH diagrams for iron at 25 C. Reun Com Int Thermodyn Dyn Cinet Electrochim. 1955;6:124–157.
  • Martinelli-Orlando F, Shi W, Angst U. Corrosion behavior of carbon steel in alkaline, deaerated solutions: influence of carbonate ions. J Electrochem Soc. 2020;167:061503.
  • Yafei S, Dongjie N, Jing S. Temperature and carbon content dependence of electrical resistivity of carbon steel. IEEE, 2009; p. 368–372.
  • Burstein G, Ilevbare G. The effect of specimen size on the measured pitting potential of stainless steel. Corros Sci. 1996;38:2257–2265.
  • Angst U, Rønnquist A, Elsener B, et al. Probabilistic considerations on the effect of specimen size on the critical chloride content in reinforced concrete. Corros Sci. 2011;53:177–187.
  • Angst UM, Elsener B. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures. Sci Adv. 2017;3:e1700751.
  • Li L, Sagues A. Chloride corrosion threshold of reinforcing steel in alkaline solutions – effect of specimen size. Corrosion. 2004;60:195–202.
  • Glass G, Chadwick J. An investigation into the mechanisms of protection afforded by a cathodic current and the implications for advances in the field of cathodic protection. Corros Sci. 1994;36:2193–2209.
  • Martinelli-Orlando F, Angst UM. CP of steel in soil: temporospatial PH and oxygen variation as a function of soil porosity. In: Pipeline Integrity; 2021.
  • Junker A, Nielsen LV. Effect of chemical environment and PH on AC corrosion of cathodically protected structures. NACE International; 2017.
  • Ackland BG, Dylejko KP. Critical questions and answers about cathodic protection. Corros Eng, Sci Technol. 2019;54:688–697.
  • Büchler M, Angst U, Ackland B. Cathodic protection criteria: a discussion of their historic evolution. In: 20th International Corrosion Congress & Process Safety Congress (EUROCORR 2017); 2017.
  • Angst U, Büchler M, Martin B, et al. Cathodic protection of soil buried steel pipelines – a critical discussion of protection criteria and threshold values. Mater Corros. 2016;67:1135–1142.
  • Gan F, Sun Z-W, Sabde G, et al. Cathodic protection to mitigate External corrosion of underground steel pipe beneath disbonded coating. Corrosion. 1994;50:804–816.
  • Gummow R, Segall S, Fingas D. An alternative view of the cathodic protection mechanism on buried pipelines. Mater Perform. 2017;56:32–37.
  • Martinelli-Orlando F, Angst U. Effect of soil porosity on the near-field PH of buried steel under CP condition. CeoCor 2021; 2021.
  • Martinelli-Orlando F, Shi W, Angst U. Investigation of PH and oxygen variations on steel electrode under cathodic protection. CeoCor 2019 International Congress & Technical Exhibition; 2019.
  • Attarchi M, Brenna A, Ormellese M. Cathodic protection and DC non-stationary anodic interference. J Nat Gas Sci Eng. 2020;82:103497.
  • Attarchi M, Brenna A, Ormellese M. PH measurement during cathodic protection and DC interference. CORROSION 2021; 2021.
  • Brenna A, Ormellese M, Lazzari L. Electromechanical breakdown mechanism of passive film in alternating current-related corrosion of carbon steel under cathodic protection condition. Corrosion. 2016;72:1055–1063.