Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 2
285
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of the temperature on the passivity of the modified martensitic stainless steels

, , , ORCID Icon, , , , , & show all
Pages 156-168 | Received 18 Jul 2022, Accepted 17 Nov 2022, Published online: 07 Dec 2022

References

  • AI-Siddiqi A, Dawe RA. A review of petroleum engineering aspects of Qatar’s oil and gas. Eng J Univ Qatar. 1998;11:11–45.
  • Al-Harthi ASM, Jong JGD. Evaluating the SCC chloride limit for UNS S31603 in sour service. In: CORROSION 2013, paper: 2676. Orlando (FL): NACE International; 2013.
  • Pessu F, Hua Y, Barker R, et al. An investigation of the overall corrosion behaviour of X65 (UNS K03014) carbon steel in different H2S-CO2-containing environments. In: CORROSION 2016, paper: 7643. Vancouver (CA): NACE International; 2016.
  • Kermani MB, Gonzales JC, Turconi GL, et al. Materials optimisation in hydrocarbon production. In: CORROSION 2005, paper: 05111. NACE International, 2005.
  • Gunaltun Y, Kermani B, Samosir T, et al. Completion tubing optimisation meeting the challenge through prediction and operational experience. In: CORROSION 2011, paper: 11064. Houston (TX): NACE International; 2011.
  • Ikeda A, Mukai S, Ueda M. Corrosion behavior of 9 to 25% Cr steels in wet CO2 environments. Corrosion. 1985;41(4):185–192.
  • Kurahashi H, Sone Y, Wada K. Corrosion and stress corrosion behavior of 13Cr martensitic stainless steels in CO2–H2S–Cl environment. Kawasaki Steel Giho. 1985;17(3):299–305.
  • Cristofaro N. D. Passivity and passivity breakdown of 13%Cr, 15%Cr and 13Cr5Ni2MoN stainless steels in chloride-containing solutions, editors. Advances in corrosion control and materials in oil and gas production. Vol. EFC 26. European Federation of Corrosion; 1999.
  • Saarinen K, Hilden J. Evaluation of 13% chromium martensitic stainless steel in H2S-containing environments by using the contact electric resistance and impedance techniques. In: Jackman PS, Smith LM, editors. Advances in corrosion control and materials in oil and gas production. Vol. EFC 26. European Federation of Corrosion; 1999.
  • Rhodes PR. Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: a review. Corrosion. 2001;57(11):923–966.
  • Turnbull A, Griffiths A. Corrosion and cracking of weldable 13 wt-% Cr martensitic stainless steels for application in the oil and gas industry. Corros Eng Sci Technol. 2003;38(1):21–50.
  • Asahi H, Hara T, Sugiyama M. Corrosion performance of modified 13Cr OCTG. CORROSION 96, paper: 061. NACE International; 1996.
  • Ueda M, Amaya H, Ogawa K, et al. Corrosion resistance of weldable super 13Cr stainless steel in H2S containing CO2 environments. In: CORROSION 96, paper: 058. NACE International; 1996.
  • Godec R, Petek A, Dolecek V. Kinetics of passive film formation on martensitic stainless steels. Corrosion. 2000;56(7):694–699.
  • Sunaba T, Ito T, Miyata Y, et al. Influence of chloride ions on corrosion of modified martensitic stainless steels at high temperatures under a CO2 environment. Corrosion. 2014;70(10):988–999.
  • Monnot M, Nogueira RP, Roche V, et al. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: metallic sulfides formation and hydrogen embrittlement. Appl Surf Sci. 2017;394:132–141.
  • Felton P, Schofield MJ. Understanding the high temperature corrosion behaviour of modified 13% Cr martensitic OCTG. In: Corrosion 98, paper: 099. San Diego (CA); 1998.
  • Marchebois H, Alami HE, Leyer J, et al. Sour service limits of 13% Cr and super 13% Cr stainless steels for OCTG: effect of environmental factors. In: CORROSION 2009, paper: 09084. NACE International; 2009.
  • Chambers B, Skogsberg J, Meng J, et al. Evaluation of environmentally assisted cracking resistance of high strength 15Cr steel in sour well environments. In: CORROSION 2012, paper: C2012-0001353. Salt Lake City (UT): NACE International; 2012.
  • Chambers BD, Gonzalez M, Chen Y, et al. Sulfide stress cracking of super 13Cr martensitic stainless steel – localized corrosion and hydrogen embrittlement influences. In: CORROSION 2018, paper: 11257. Phoenix (AZ): NACE International; 2018.
  • Zhang Y, Urquidi-Macdonald M, Engelhardt GR, et al. Development of localized corrosion damage on low pressure turbine disks and blades: I. Passivity. Electrochim Acta. 2012;69:1–11.
  • Macdonald DD. The history of the point defect model for the passive state: a brief review of film growth aspects. Electrochim Acta. 2011;56(4):1761–1772.
  • Macdonald DD. The point defect model for the passive state. J Electrochem Soc. 1992;139(12):3434–3449.
  • Zhang Y, Macdonald DD, Urquidi-Macdonald M, et al. Passivity breakdown on AISI type 403 stainless steel in chloride-containing borate buffer solution. Corros Sci. 2006;48(11):3812–3823.
  • Breslin CB, Macdonald DD, Sikora E. Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions. J Elecmchimica Acta. 1997;42(1):137–144.
  • Case R.P, Rincon H.E, McIntyre D.R. Analysis of pit stability in type 316L stainless steel exposed to H2S-saturated dilute chloride solutions above the critical pitting temperature. Corrosion. 2012;68(3).
  • Case R, Newman RC, Olsen S, et al. Pit growth behavior of modified 13 Cr steel in sour environments. In: EUROCORR 2000, paper. London: Institute of Materials; 2000.
  • Laycock NJ, Newman RC. Temperature dependence of pitting potentials for austenitic stainless steels above their critical pitting temperature. Corros Sci. 1998;40(6):887–902.
  • Ernst P, Newman RC. Pit growth studies in stainless steel foils. I. introduction and pit growth kinetics. Corros Sci. 2002;44:927–941.
  • Moayed MH, Newman RC. The relationship between pit chemistry and pit geometry near the critical pitting temperature. J Electrochem Soc. 2006;153(8):B330.
  • Meck NS, Kane R, Chambers B, et al. Sour service limits of martensitic stainless steels: a review of current knowledge, test methods and development work. In: CORROSION 2013, paper: 2639. Orlando (FL): NACE International; 2013.
  • Pahlavan S, Moazen S, Taji I, et al. Pitting corrosion of martensitic stainless steel in halide bearing solutions. Corros Sci. 2016;112:233–240.
  • European Federation of Corrosion EFC Corrosion resistant alloys for oil and gas production: guidance on general requirements and test methods for H2S service. Maney; 2002.
  • Amaya H, Kondo K, Hirata H, et al. Effect of chromium and molybdenum on corrosion resistance of super 13Cr martensitic stainless steel in CO2 environment. In: CORROSION 98, paper: 113. San Diego (CA: NACE International; 1998.
  • Rincon HE, Case RP, Tang X. Determination of the critical pitting temperature of stainless steel using electrochemical testing techniques. In: CORROSION 2012, paper: C2012-0001334C2012-0001334. Salt Lake City (UT): NACE International; 2012.
  • Kriksunov LB, Macdonald DD, Millett PJ. Tungsten/tungsten oxide pH sensing electrode for high temperature aqueous environments. J Electrochem Soc. 1994;141(11):3002–3005.
  • Cheng C-H, Ning J, Case R. Development of a reference electrode for study of supercritical Co2 corrosion. In: CORROSION 2018, paper: 11073. Phoenix (AZ): NACE International; 2018.
  • Frankel GS. Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc. 1998;145(6):2186–2197.
  • Zhang Y, Urquidi-Macdonald M, Engelhardt GR, et al. Development of localized corrosion damage on low pressure turbine disks and blades: II. Passivity breakdown. Electrochim Acta. 2012;69:12–18.
  • Case R. Semiconductor electrochemical study of the passivity limits of austenitic stainless-steel in H2S-containing brines. Corros Eng Sci Technol. 2021;56(4):372–382.
  • Moayed MH, Newman RC. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature. Corros Sci. 2006;48(4):1004–1018.
  • Sato N. An overview on the passivity of metals. Corros Sci. 1990;31:1–19.
  • Laycock NJ, Moayed MH, Newman RC. Metastable pitting and the critical pitting temperature. J Electrochem Soc. 1998;145(8):2622–2628.
  • Ghanbari E, Kovalov D, Saatchi A, et al. The influence of halide ions on the passivity breakdown of carbon steel based on the point defect model. In: CORROSION 2018, paper: 1102511025. Phoenix (NM): NACE International; 2018.
  • Haruna T, Macdonald DD. Theoretical prediction of the scan rate dependencies of the pitting potential and the probability distribution in the induction time. J Electrochem Soc. 1997;144(5):1574–1581.
  • Yang S, Macdonald DD. Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion. Electrochim Acta. 2007;52(5):1871–1879.
  • Case R. Study of the passivity limits of austenitic stainless steel in H2S-containing brines using Mott-Schottky and point defect model analysis. Corrosion. 2021;77(7):764–777.
  • Ernst P, Newman RC. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition. Corros Sci. 2002;44:943–954.
  • Sikora E, Sikora J, Macdonald DD. Nature of the passive film on nickel. Electrochem Acta. 1996;41(6):783–789.
  • Masamura K, Hashizume S, Sakai J, et al. Polarization behavior of high-alloy OCTG in CO2 environment as affected by chlorides and sulfides. Corrosion. 1987;43(6):359–365.
  • Macdonald DD, Ben-Haim M, Pallix J. Sali analysis of passive films on nickel alloys. J Corros Sci. 1990;31:223–230.
  • Engelhardt GR, Case RP, Macdonald DD. Electrochemical impedance spectroscopy optimization on passive metals. J Electrochem Soc. 2016;163(8):C470–C476.
  • Sharifi-Asl S, Taylor ML, Lu Z, et al. Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach. Electrochim Acta. 2013;102:161–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.