Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 5
128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion behaviour of oxide film formed on carbon steel in high temperature alkaline water in the presence of zinc and magnesium ions

ORCID Icon, ORCID Icon, , , &
Pages 492-507 | Received 01 Nov 2022, Accepted 31 Mar 2023, Published online: 16 May 2023

References

  • Lin CC. A review of corrosion product transport and radiation field buildup in boiling water reactors. Prog Nucl Energy. 2009;51:207–224. doi:10.1016/j.pnucene.2008.05.005
  • Lister DH, Venkateswaran G. Effects of magnesium and zinc additives on corrosion and cobalt contamination of stainless steels in simulated BWR coolant. Nucl Technol. 1999;125:316–331. doi:10.13182/NT99-A2950
  • Choi JS, Park SC, Park KR, et al. Effect of zinc injection on the corrosion products in nuclear fuel assembly. Nat Sci. 2013;5:173–181. doi:10.4236/ns.2013.52027
  • Niedrach LW, Stoddard WH. Effect of zinc on corrosion films that form on stainless steel. Corrrosion. 1986;42:546–549. doi:10.5006/1.3583066
  • Jeon S-H, Lim D-S, Choi J, et al. Effects of zinc addition on the corrosion behavior of pre-filmed alloy 690 in borated and lithiated water at 330°C. Materials (Basel). 2021;14:4105. doi:10.3390/ma14154105
  • Arjmand F, Zhang L, Zhang Y, et al. Effect of zinc injection on the electrochemical behavior and crack growth rate of a 316 L stainless steel in simulated primary coolant of pressurized water reactors. Mater Charact. 2021;117:111177. doi:10.1016/j.matchar.2021.111177
  • Arjmand F, Wang J, Zhang L. Zinc addition and its effect on the corrosion behavior of a 30% cold forged alloy 690 in simulated primary coolant of pressurized water reactors. J Alloys Compd. 2019;791:1176–1192. doi:10.1016/j.jallcom.2019.03.362
  • Andresen PL, Was GS. Corrosion in the nuclear power industry. In: Stephen D. Cramer, Bernard Bernard S. Covino Jr., editors. ASM handbook. United States of America: ASM International; 2006. p. 404–406.
  • Lin CC, Smith FR, Uruma Y, et al. Cobalt deposition studies in GE vallecitos test loops. JAIF International Conference on Water Chemistry in Nuclear Power Plants, Vol. 2, Tokyo, Japan; 1988. p. 19–22.
  • Holdsworth S, Scenini F, Grace Burke M, et al. The effect of high-temperature water chemistry and dissolved zinc on the cobalt incorporation on type 316 stainless steel oxide. Corros Sci. 2018;140:241–251. doi:10.1016/j.corsci.2018.05.041
  • Zhang S, Shi R, Chen Y, et al. Corrosion behavior of oxide films on AISI 316L SS formed in high temperature with simultaneous injection of zinc and aluminium. J Alloys Compd. 2018;731:1230–1237. doi:10.1016/j.jallcom.2017.10.154
  • Velmurugan S, Padma S, Narasimhan SV, et al. The passivation effects of magnesium ion on PHWR primary heat transfer system structural materials. J Nucl Sci Technol. 1996;33:641–649. doi:10.1080/18811248.1996.9731971.
  • Inagaki H, Nishikawa A, Sugita Y, et al. Synergy effect of simultaneous zinc and nickel addition on cobalt deposition onto stainless steel in oxygenated high temperature water. J Nucl Sci Technol. 2003;40:143–152. doi:10.1080/18811248.2003.9715344
  • Suresh S, Palogi C, Bera S, et al. Electrochemical behaviour of nickel containing passive oxide films on carbon steel in alkaline medium. Thin Solid Films. 2021;721:138550. doi:10.1016/j.tsf.2021.138550
  • Zhang S, Sun C, Tan Y. Influence of zinc and aluminum simultaneous injection on corrosion behavior and semiconducting properties of oxide film on 304L. Int J Electrochem Sci. 2020;15:9874–9887. doi:10.20964/2020.10.62
  • Zhang S, Sun C, Tan Y. Corrosion behavior of high strength low-alloy steel in high-temperature water with zinc and aluminum simultaneous injection. Corrosion. 2020;76(10):918–929. doi:10.5006/3545
  • Suresh S, Rangarajan S, Bera S, et al. Electrochemical characterization of nano zinc ferrite coating on carbon steel by pulsed laser deposition. Thin Solid Films. 2016;612:250–258. doi:10.1016/j.tsf.2016.06.026
  • ASTM G1-90. Standard practice for preparing, cleaning and evaluating corrosion test specimens. West Conshohocken (PA): ASTM International; 1998.
  • Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11:102–113. doi:10.1107/S0021889878012844
  • Wagner CNJ, Aqua EN. Analysis of the broadening of powder pattern peaks from cold-worked face centered and body centered cubic metals. Adv X Ray Anal. 1963;7:46–65.
  • Mayer M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conf Proc. 1999;475:541–544. doi:10.1063/1.59188
  • Sankaranarayan TSN, Baskaran I, Krishnaveni K, et al. Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance. Surf Coat Technol. 2006;200:3438–3445. doi:10.1016/j.surfcoat.2004.10.014
  • Lorenz WJ, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corros Sci. 1981;21:647–672. doi:10.1016/0010-938X(81)90015-9
  • Martini EMA, Muller IL. Characterization of the film formed on iron in borate solution by electrochemical impedance spectroscopy. Corros Sci. 2000;42:443–454. doi:10.1016/S0010-938X(99)00064-5
  • Cullity BD. Elements of X-Ray Diffraction, 2nd Edition. United States of America: Addison-Wesley; 1971.
  • Jobe D. The calculated solubilitites of hematite, magnetite and lepidocrocite in steam generator feed trains. Pinawa (Manitoba): AECL; 1997, 37, Report No. AECL-11683.
  • Bera S, Prince AAM, Velmurugan S, et al. Formation of zinc ferrite by solid state reaction and its characterization by XRD and XPS. J Mater Sci. 2001;36:5379–5384. doi:10.1023/A:1012488422484
  • Mittal VK, Bera S, Nithya R, et al. Solid state synthesis of Mg-Ni ferrite and characterization by XRD and XPS. J Nucl Mater. 2004;335:302–310. doi:10.1016/j.jnucmat.2004.05.010
  • White WB, DeAngeli BA. Interpretation of vibrational spectra of spinels. Spectrochim Acta. 1967;23A:985–995. doi:10.1016/0584-8539(67)80023-0
  • Singh JP, Srivastava RC, Agrawal HM, et al. Micro-Raman investigation of nanosized zinc ferrite:effect of crystallite size and fluence of irradiation. J Raman Spectrosc. 2011;42:1510–1517. doi:10.1002/jrs.2902
  • Friedbacher G, Bubert H. Surface and thin film analysis: a compendium of principles, instrumentation, and applications. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co KGaA; 2011.
  • Behera SK, Ajay Kumar P, Dogra N, et al. Effect of microstructure on contact angle and corrosion of ductile iron: iron-graphite composite. Langmuir. 2019;35:16120–16129. doi:10.1021/acs.langmuir.9b02395
  • Carranza RM, Alvarez MG. The effect of temperature on the passive film properties and pitting behavior of a Fe–Cr–Ni alloy. Corros Sci. 1996;38:909–925. doi:10.1016/0010-938X(96)00176-X
  • Lukacs Z, Kristof T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy. Electrochim Acta. 2020;363:137199. doi:10.1016/j.electacta.2020.137199
  • Shi H, Liu F, Han E-H. The corrosion behavior of zinc-rich paints on steel: influence of simulated salts deposition in an offshore atmosphere at the steel/paint interface. Surf Coat Technol. 2011;205:4532–4539. doi:10.1016/j.surfcoat.2011.03.118
  • Yilmaz A, Traka K, Pletincx S, et al. Effect of microstructural defects on passive layer properties of interstitial free (IF) ferritic steels in alkaline environment. Corros Sci. 2021;182:109271. doi:10.1016/j.corsci.2021.109271
  • Hamadou L, Kadri A, Benjamin N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy. Appl Surf Sci. 2005;252:1510–1519. doi:10.1016/j.apsusc.2005.02.135
  • Yilmaz A, Ozkan C, Sietsma J, et al. Properties of passive films formed on ferrite-martensite and ferrite-pearlite steel microstructures. Metals (Basel). 2021;11:594. doi:10.3390/met11040594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.