Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 30, 2016 - Issue 18
379
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi?

, , , , , , , , , , , , & show all
Pages 2077-2084 | Received 13 May 2015, Accepted 12 Sep 2015, Published online: 17 Dec 2015

References

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G. 2015. Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x.
  • Banchio E, Valladares G, Defago M, Palacio SS, Carpinella C. 2003. Effects of Melia azedarach (Meliaceae) fruit extracts on the leaf miner Liriomyza haidobrensis (Diptera: Agromyzidae): assessment in laboratory and field experiments. Ann Appl Biol. 143:187–193.10.1111/aab.2003.143.issue-2
  • Baun A, Hartmann NB, Grieger K, Kusk KO. 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 17:387–395.
  • Benelli G. 2015a. Research in mosquito control: current challenges for a brighter future. Parasitol Res. 114: 2801–2805. doi:10.1007/s00436-015-4586-9.
  • Benelli G. 2015b. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res. 114:3201–3212. 10.1007/s00436-015-4656-z
  • Benelli G. 2016. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. doi:10.1007/s00436-015-4800-9.
  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M. 2015. Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res. 114:227–236.10.1007/s00436-014-4183-3
  • Benelli G, Flamini G, Fiore G, Cioni PL, Conti B. 2013. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 112:1155–1161.10.1007/s00436-012-3246-6
  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M. 2015. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res. 114:391–397.10.1007/s00436-014-4286-x
  • Chen L, Evans JR. 2009. Arched structures created by colloidal droplets as they dry. Langmuir. 25:11299–11301.10.1021/la902918m
  • Coria C, Almiron W, Valladares G, Carpinella C, Ludueña F, Defago M, Palacios S. 2008. Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Biores Technol. 99:3066–3070.10.1016/j.biortech.2007.06.012
  • D’Ambrosio M, Guerriero A. 2002. Degraded limonoids from Melia azedarach and biogenetic implications. Phytochemistry. 60:419–424.10.1016/S0031-9422(02)00107-3
  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U. 2015. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res. 114:1519–1529.10.1007/s00436-015-4336-z
  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH. 2005. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 3:6. doi:10.1186/1477-3155-3-6.10.1186/1477-3155-3-6
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 37:517–531.10.1016/j.envint.2010.10.012
  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C. 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 18:105–115.
  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F. 2012. Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res. 110:259–265.10.1007/s00436-011-2480-7
  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U. 2015. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res. 14: 2243–2253. doi:10.1007/s00436-015-4417-z.
  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P. 2015. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol. 153:129–138.10.1016/j.exppara.2015.03.017
  • Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, et al. 2015. Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. 114: 3601–3610. doi:10.1007/s00436-015-4582-0.
  • Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Roni M, Suresh U, Nicoletti M, Alarfaj AA, et al. 2015. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses. Nat Prod Res. doi:10.1080/14786419.2015.1074230.
  • Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, et al. 2015. Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Poll Res. 22: 17053–17064. doi:10.1007/s11356-015-4920-x.
  • Nicoletti M, Mariani S, Maccioni O, Coccioletti T, Murugan K. 2012. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol Res. 111:205–213.10.1007/s00436-012-2819-8
  • Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM. 2007. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl Phys B.  86(3):455–460.
  • Ntalli NG, Vargiu S, Menkissoglu-Spiroudi U, Caboni P. 2010. Nematicidal carboxylic acids and aldehydes from Melia azedarach fruits. J Agr Food Chem. 58:11390–11394.10.1021/jf1025345
  • Oberdorster E, Zhu S, Michelle Blickley T, McClellan-Green P, Haasch ML. 2006. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon. 44:1112–1120.10.1016/j.carbon.2005.11.008
  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J. 2013. Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med. 6:102–109.10.1016/S1995-7645(13)60003-6
  • Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J. 2014. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull. 85:526–531.10.1016/j.marpolbul.2014.04.038
  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK. 2012. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res. 111:555–562.10.1007/s00436-012-2867-0
  • Piryaei M, Mahdi Abolghasemi M, Nazemiyeh H. 2015. Fast determination of Ziziphora tenuior L. essential oil by inorganic–organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica. Nat Prod Res. 28:833–837.10.1080/14786419.2014.989394
  • Rahimi-Nasrabadi M, Seied Pourmortazavi S, Ataollah Sadat Shandiz S, Ahmadi F, Batooli H. 2014. Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat Prod Res. 28:1964–1969.10.1080/14786419.2014.918124
  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT. 2015. Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod. 70:356–373.10.1016/j.indcrop.2015.03.015
  • Ramanibai R, Velayutham K. 2015. Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci. 98:82–88.10.1016/j.rvsc.2014.11.009
  • Rawani A, Ghosh A, Chandra G. 2013. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop. 128:613–622.10.1016/j.actatropica.2013.09.007
  • Salunkhe RB, Patil SV, Patil CD, Salunke BK. 2011. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res. 109:823–831.10.1007/s00436-011-2328-1
  • Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. 2010. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett. 3:138–143.10.1166/asl.2010.1099
  • Senthil Nathan S, Savitha G, Dency KG, Narmadha A, Suganya L, Chung PG. 2006. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol. 97:1316–1323.10.1016/j.biortech.2005.05.019
  • Song J, Kim B. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 32:79–84.10.1007/s00449-008-0224-6
  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B. 2015. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res. 114:1551–1562.10.1007/s00436-015-4339-9
  • Wandscheer CB, Duque JE, da Silva Man, Fukuyama Y, Wohlke JL, Adelmann J Fontana JD. 2004. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicology. 44:829–835.
  • WHO. 2014. Malaria. Fact sheet N°94. Geneva: World Health Organization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.