Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 32, 2018 - Issue 12
441
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Dendropsophin 1, a novel antimicrobial peptide from the skin secretion of the endemic Colombian frog Dendropsophus columbianus

, , , , , , , , , & ORCID Icon show all
Pages 1383-1389 | Received 20 Apr 2017, Accepted 09 Jun 2017, Published online: 29 Jun 2017

References

  • Bennett WF, Hong CK, Wang Y, Tieleman DP. 2016. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J Chem Theory Comput. Sep 13;12:4524–4533.10.1021/acs.jctc.6b00265
  • Brandenburg L-O, Merres J, Albrecht L-J, Varoga D, Pufe T. 2012. Antimicrobial peptides: multifunctional drugs for different applications. Polymers. 4:539–560.10.3390/polym4010539
  • Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. Mar;3:238–250.10.1038/nrmicro1098
  • Cardoso MH, Cobacho NB, Cherobim MD, Pinto MFS, dos Santos C, Maximiano MR, de Barros EG, Dias SC, Franco OL. 2014. Insights into the antimicrobial activities of unusual antimicrobial peptide families from amphibian skin. J Clin Toxicol. doi:10.4172/2161-0495.1000205.
  • Castro MS, Fontes W. 2005. Plant defense and antimicrobial peptides. Protein Pept Lett. 12:11–16.10.2174/0929866053405832
  • Castro-Herrera F, Vargas-Salinas F. 2008. Anfibios y reptiles en el departamento del Valle del Cauca, Colombia. Biota Colombiana. 9:251–277.
  • Chen C, Chen Y, Yang C, Zeng P, Xu H, Pan F, Lu JR. 2015. High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl Mater Interfaces. 7:17346–17355.10.1021/acsami.5b04547
  • Conlon JM, Kolodziejek J, Nowotny N. 2004. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta. 1696:1–14.
  • Costa TO, Almeida RA, Melo JT, Koolen HH, Silva F, Leite JRS, Prates MV, Bloch C Jr, Pinto AC. 2012. Isolation and amino acid sequencing by MALDI-TOF-MS/MS of a novel antimicrobial anionic peptide from the skin secretion of Osteocephalus taurinus (Anura, Hylidae). J Braz Chem Soc. 23:2133–2136.10.1590/S0103-50532012001200002
  • Dennison SR, Morton LH, Phoenix DA. 2012. Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs. Protein Pept Lett. 19(6):586–591.10.2174/092986612800494110
  • Faivovich J, Haddad CF, Garcia PC, Frost DR, Campbell JA, Wheeler WC. 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the AMNH. 4:1–240.
  • Gómez-Hoyos DA, Marín-Gómez OH, Guerrero JV. 2012. Unusual amplexus in Dendropsophus columbianus (Anura: Hylidae). Herpetol Notes. 497–498.
  • Hancock RE, Haney EF, Gill EE. 2016. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. May;16:321–334.10.1038/nri.2016.29
  • Hansen AM, Bonke G, Larsen CJ, Yavari N, Nielsen PE, Franzyk H. 2016. Antibacterial peptide nucleic acid-antimicrobial peptide (PNA–AMP) conjugates: antisense targeting of fatty acid biosynthesis. Bioconjug chem. 27:863–867.10.1021/acs.bioconjchem.6b00013
  • Kelly SM, Jess TJ, Price NC. 2005. How to study proteins by circular dichroism. Biochim Biophys Acta. Aug 10;1751:119–139.10.1016/j.bbapap.2005.06.005
  • Kool J. 2016. Pharmaceutical properties of venom toxins and their potential in drug discovery. Indonesian J Pharm. 27:1.10.14499/indonesianjpharm27iss1pp1
  • La Rocca P, Biggin PC, Tieleman DP, Sansom MS. 1999. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim Biophys Acta. 1462:185–200.10.1016/S0005-2736(99)00206-0
  • Libério MS, Joanitti GA, Azevedo RB, Cilli EM, Zanotta LC, Nascimento AC, Sousa MV, Júnior ORP, Fontes W, Castro MS. 2011. Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids. 40:51–59.10.1007/s00726-009-0384-y
  • Mangoni ML, Maisetta G, Di Luca M, Gaddi LMH, Esin S, Florio W, Brancatisano FL, Barra D, Campa M, Batoni G. 2008. Comparative analysis of the bactericidal activities of amphibian peptide analogues against multidrug-resistant nosocomial bacterial strains. Antimicrob Agents Chemother. 52:85–91.10.1128/AAC.00796-07
  • McInnes C, Kondejewski LH, Hodges RS, Sykes BD. 2000. Development of the structural basis for antimicrobial and hemolytic activities of peptides based on gramicidin S and design of novel analogs using NMR spectroscopy. J Biol Chem. May 12;275:14287–14294.10.1074/jbc.275.19.14287
  • Mojsoska B, Jenssen H. 2015. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals. 8:366–415.10.3390/ph8030366
  • Mor A, Hani K, Nicolas P. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem. 269:31635–31641.
  • Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL. 2013. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol. 4:321.
  • Nascimento ACC, Fontes W, Sebben A, Castro MS. 2003. Antimicrobial peptides from anurans skin secretions. Protein Pept Lett. 10:227–238.10.2174/0929866033478933
  • Parachin NS, Franco OL. 2014. New edge of antibiotic development: antimicrobial peptides and corresponding resistance. Front Microbiol. 5:147.
  • Rabanal F, Cajal Y. 2016. Therapeutic Potential of Antimicrobial Peptides. In: New Weapons to Control Bacterial Growth. Springer. p. 433–451.10.1007/978-3-319-28368-5
  • Rashid R, Veleba M, Kline KA. 2016. Focal targeting of the bacterial envelope by antimicrobial peptides. Front Cell Dev Biol. 4:55.
  • Villa-Hernandez O, Hernandez-Orihuela L, Rodriguez MdC, Zamudio-Zuniga F, Castro-Franco R, Pando V, Batista CV. 2009. Novel antimicrobial peptides isolated from skin secretions of the mexican frog hyla eximia. Protein Pept Lett. 16:1371–1378.10.2174/092986609789353727
  • Wang G. 2015. Improved methods for classification, prediction, and design of antimicrobial peptides. Computational Peptidology. 43–55.10.1016/j.jcp.2015.03.033
  • van der Weerden NL, Bleackley MR, Anderson MA. 2013. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci. 70:3545–3570.10.1007/s00018-013-1260-1
  • Xi X, Li R, Jiang Y, Lin Y, Wu Y, Zhou M, Xu J, Wang L, Chen T, Shaw C. 2013. Medusins: a new class of antimicrobial peptides from the skin secretions of phyllomedusine frogs. Biochimie. 95:1288–1296.10.1016/j.biochi.2013.02.005
  • Xu X, Lai R. 2015. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev. 115:1760–1846.10.1021/cr4006704
  • Yu G, Baeder DY, Regoes RR, Rolff J. 2016. Combination effects of antimicrobial peptides. Antimicrob Agents Chemother. 60:1717–1724.10.1128/AAC.02434-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.