Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 36, 2022 - Issue 12
261
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

New benzoic acid and caffeoyl derivatives with anti-inflammatory activities isolated from leaves of Ilex kaushue

ORCID Icon, , ORCID Icon &
Pages 3013-3021 | Received 22 Apr 2021, Accepted 01 Jun 2021, Published online: 12 Aug 2021

References

  • Albach DC, Grayer RJ, Jensen SR, Özgökce F, Veitch NC. 2003. Acylated flavone glycosides from Veronica. Phytochemistry. 64(7):1295–1301..
  • Banwell MG, Hungerford NL, Jolliffe KA. 2004. Synthesis of the Sialic Acid (−)-KDN and Certain Epimers from (−)-3-Dehydroshikimic Acid or (−)-Quinic Acid. Org Lett. 6(16):2737–2740..
  • Bruhn T, Schaumlöffel A, Hemberger Y, Pescitelli G. 2017. SpecDis version 1.71 [Internet]. Berlin, Germany. http:/specdis-software.jimdo.com.
  • Che Y, Wang Q, Xiao R, Zhang J, Zhang Y, Gu W, Rao G, Wang C, Kuang H. 2018. Kudinoside-D, a triterpenoid saponin derived from Ilex kudingcha suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. Fitoterapia. 125:208–216..
  • Chen Y-L, Hwang T-L, Yu H-P, Fang J-Y, Chong KY, Chang Y-W, Chen C-Y, Yang H-W, Chang W-Y, Hsieh P-W. 2016. Ilex kaushue and its bioactive component 3,5-dicaffeoylquinic acid protected mice from lipopolysaccharide-induced acute lung injury. Sci Rep. 6(1):34243..
  • Choi SZ, Lee SO, Choi SU, Lee KR. 2003. A new sesquiterpene hydroperoxide from the aerial parts of Aster oharai. Arch Pharm Res. 26(7):521–525..
  • Choodej S, Pudhom K, Mitsunaga T. 2018. Inhibition of TNF-α-induced inflammation by sesquiterpene lactones from Saussurea lappa and semi-synthetic analogues. Planta Med. 84(5):329–335..
  • Frank O, Blumberg S, Kunert C, Zehentbauer G, Hofmann T. 2007. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS. J Agric Food Chem. 55(5):1945–1954..
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, et al. 2016. Gaussian16 Revision B.01. Wallingford CT: Gaussian Inc.
  • Goto H, Nakayama N, Ohta K. 2017. CONFLEX 8. Tokyo, Japan: CONFLEX Corporation.
  • Goto H, Osawa E. 1989. Corner flapping: a simple and fast algorithm for exhaustive generation of ring conformations. J Am Chem Soc. 111(24):8950–8951.
  • Goto H, Osawa E. 1993. An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules. J Chem Soc. Perkin Trans. 2(2):187–198. https://doi.org/https://doi.org/10.1039/P29930000187.
  • Guazzaroni M, Crestini C, Saladino R. 2012. Layer-by-Layer coated tyrosinase: an efficient and selective synthesis of catechols. Bioorg Med Chem. 20(1):157–166..
  • Kakumu Y, Yamauchi K, Mitsunaga T. 2019. Identification of chemical constituents from the bark of Larix kaempferi and their tyrosinase inhibitory effect. Holzforschung. 73(7):637–643..
  • Li L, Xu LJ, Ma GZ, Dong YM, Peng Y, Xiao PG. 2013. The large-leaved Kudingcha (Ilex latifolia Thunb and Ilex kudingcha C.J. Tseng): a traditional Chinese tea with plentiful secondary metabolites and potential biological activities. J Nat Med. 67(3):425–437..
  • Lv Q, Lin Y, Tan Z, Jiang B, Xu L, Ren H, Tai WC, Chan C, Lee C, Gu Z, et al. 2019. Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on α-glucosidase in vitro. Food Funct. 10(5):2881–2887..
  • Møller BL, Olsen CE, Motawia MS. 2016. General and stereocontrolled approach to the chemical synthesis of naturally occurring cyanogenic glucosides. J Nat Prod. 79(4):1198–1202..
  • Nahrstedt A, Limmer S. 1982. Dhurrin, the cyanogenic glucoside of Cercocarpus ledifolius. Phytochemistry. 21(11):2738–2740..
  • Otsuka H, Ito A, Fujioka N, Ichiro Kawamata K, Kasai R, Yamasaki K, Satoh T. 1993. Butenolides from Sinomenium acutum. Phytochemistry. 33(2):389–392..
  • Ouyang M-A, Wang H-Q, Chen Z-L, Yang C-R. 1996. Triterpenoid glycosides from Ilex kudincha. Phytochemistry. 43(2):443–445..
  • Ouyang M-A, Yang C-R, Chen Z-L, Wang H-Q. 1996. Triterpenes and triterpenoid glycosides from the leaves of Ilex kudincha. Phytochemistry. 41(3):871–877..
  • Pouységu L, Sylla T, Garnier T, Rojas LB, Charris J, Deffieux D, Quideau S. 2010. Hypervalent iodine-mediated oxygenative phenol dearomatization reactions. Tetrahedron. 66(31):5908–5917..
  • Seigler DS, Pauli GF, Fröhlich R, Wegelius E, Nahrstedt A, Glander KE, Ebinger JE. 2005. Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virgininana, Tiquilia plicata and Tiquilia canescens. Phytochemistry. 66(13):1567–1580..
  • Sendker J, Ellendorff T, Hölzenbein A. 2016. Occurrence of benzoic acid esters as putative catabolites of prunasin in senescent leaves of Prunus laurocerasus. J Nat Prod. 79(7):1724–1729..
  • Siddiqui S, Siddiqui BS, Naeed A, Begum S. 1990. Three pentacyclic triterpenoids from the leaves of Plumeria obtusa. J Nat Prod. 53(5):1332–1336..
  • Silva FAM, Borges F, Guimarães C, Lima JLFC, Matos C, Reis S. 2000. Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters †. J Agric Food Chem. 48(6):2122–2126..
  • Tang L, Jiang Y, Chang H-T, Zhao M-B, Tu P-F, Cui J-R, Wang R-Q. 2005. Triterpene saponins from the leaves of Ilex kudingcha. J Nat Prod. 68(8):1169–1174..
  • Thuong PT, Su ND, Ngoc TM, Hung TM, Dang NH, Thuan ND, Bae K, Oh WK. 2009. Antioxidant activity and principles of Vietnam bitter tea Ilex kudingcha. Food Chem. 113(1):139–145..
  • Wan P, Xie M, Chen G, Dai Z, Hu B, Zeng X, Sun Y. 2019. Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food Chem Toxicol. 126:332–342..
  • Wang Y, Hamburger M, Gueho J, Hostettmann K. 1992. Cyclohexanecarboxylic-acid derivatives from Psiadia trinervia. Helv Chim Acta. 75(1):269–275..
  • Zheng J, Zhou H, Zhao Y, Lun Q, Liu B, Tu P. 2015. Triterpenoid-enriched extract of Ilex kudingcha inhibits aggregated LDL-induced lipid deposition in macrophages by downregulating low density lipoprotein receptor-related protein 1 (LRP1). J Funct Foods. 18:643–652..
  • Zuo W-J, Dai H-F, Chen J, Chen H-Q, Zhao Y-X, Mei W-L, Li X, Wang J-H. 2011. Triterpenes and triterpenoid saponins from the leaves of Ilex kudincha. Planta Med. 77(16):1835–1840..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.