Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 37, 2023 - Issue 2
311
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthetic modifications of abietane diterpene acids to potent antimicrobial agents

ORCID Icon, , & ORCID Icon
Pages 313-321 | Received 01 Mar 2021, Accepted 03 Aug 2021, Published online: 27 Aug 2021

References

  • Baldin VP, de Lima Scodro RB, Lopes-Ortiz МA, Aryadne Larissa de Almeida AL, Gazim ZC, Ferarrese L, Faiões VDS, Torres-Santos EC, Claudia Terencio Agostinho Pires CTA, Caleffi-Ferracioli KR, et al. 2018. Anti-Mycobacterium tuberculosis activity of essential oil and 6,7-dehydroroyleanone isolated from leaves of Tetradenia riparia (Hochst.) Codd (Lamiaceae). Phytomedicine. 47:34–39.
  • Blanchet M, Borselli D, Brunel JM. 2016. Polyamine derivatives: a revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Fut Med Chem. 8(9):963–973.
  • Chen GG, Wu HM, Peng CF, Chen IS, Chu SD. 2009. seco-abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima. J Nat Prod. 72(2):223–228.
  • Cui YM, Liu XL, Zhang WM, Lin HX, Ohwad T, Ido K, Sawada K. 2016. The synthesis and BK channel-opening activity of N-acylaminoalkyloxime derivatives of dehydroabietic acid. Bioorg Med Chem Lett. 26(2):283–287.
  • Fallarero A, Skogman M, Kujala J, Rajaratnam M, Moreira V, Yli-Kauhaluoma J, Vuorela P. 2013. (þ)-Dehydroabietic acid, an abietane-type diterpene, inhibits Staphylococcus aureus biofilms in vitro. IJMS. 14(6):12054–e12072.
  • Ferreira ML, Gonçalves RSB, Cardoso LNF, Kaiser CR, Candéa ALP, Henriques MGMO, Lourenço MCS, Bezerra FAFM, Souza MVN. 2010. Synthesis and antitubercular activity of heteroaromatic isonicotinoyl and 7-chloro-4-quinolinyl hydrazone derivatives. Sci World J. 10:1347–1355.
  • Flekhter OB, Tret'yakova EV, Makara NS, Gabdrakhmanova SF, Baschenko NZh, Galin FZ, Zarudii FS, Tolstikov GA. 2003. Synthesis and antiulcer activity of quinopimaric acid derivatives. Russ. Pharm. Chem. J. 37(3):142–144.
  • Gonzalez MA. 2014. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur J Med Chem. 87(24):834–842.
  • González MA, Correa-Royero J, Agudelo L, Mesa A, Betancur-Galvis L. 2009. Synthesis and biological evaluation of abietic acid derivatives. Eur J Med Chem. 44(6):2468–2472.
  • Hou W, Zhang G, Luo Z, Li D, Ruan H, Ruan BH, Su L, Xu H. 2017. Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorg Med Chem Lett. 27(24):5382–5386.
  • Kang S, Zhang J, Yuan Y. 2018. Abietic acid attenuates IL-1β-induced inflammation in human osteoarthritis chondrocytes. Int Immunopharmacol. 64:110–115.
  • Kazakova OB, Giniyatullina GV, Mustafin AG, Babkov DA, Sokolova EV, AA, Spasov AA. 2020. Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids. Molecules. 25(20):4833.
  • Kazakova OB, Medvedeva NI, Samoilova IA, Baikova IP, Tolstikov GA, Kataev VE, Mironov VF. 2011. Conjugates of several lupane, oleanane, and ursane triterpenoids with the antituberculosis drug isoniazid and pyridinecarboxaldehydes. Chem Nat Compd. 47(5):752–758.
  • Kazakova OB, Medvedeva NI, Smirnova IE, Lopatina TV, Veselovsky AV. 2021. The introduction of hydrazone, hydrazide, or azepane moieties to the triterpenoid core enhances an activity against M. tuberculosis. Med Chem. 17(2):134–145.
  • Kazakova OB, Tretyakova EV, Kukovinets OS, Abdrakhmanova AR, Kabalnova NN, Kazakov DV, Tolstikov GA, Gubaidullin AT. 2010a. Synthesis of nontrivial quinopimaric acid derivatives by oxidation with dimethyldioxirane. Tetrahedron Lett. 51(14):1832–1835.
  • Kazakova OB, Tret'yakova EV, Kukovinets OS, Tolstikov GA, Nazyrov TI, Chudov IV, Ismagilova AF. 2010b. Synthesis and pharmacological activity of amides and ozonolysis product of maleopimaric acid. Russ J Bioorg Chem. 36:832–840.
  • Kazakova OB, Tret’yakova EV, Smirnova IE, Spirikhin LV, Tolstikov GA, Chudov IV, Bazekin GV, Ismagilova AF. 2010c. The synthesis and anti-inflammatory activity of quinopimaric acid derivatives. Russ J Bioorg Chem. 36(2):257–262.
  • Manner S, Vahermo M, Skogman ME, Krogerus S, Vuorela PM, Yli-Kauhaluoma J, Fallarero A, Moreira VM. 2015. New derivatives of dehydroabietic acid target planktonic and biofilm bacteria in Staphylococcus aureus and effectively disrupt bacterial membrane integrity. Eur J Med Chem. 102:68–79.
  • Rijo P, Simoes MF, Francisco AP, Rojas R, Gilman RH, Vaisberg AJ, Rodriguez B, Moiteiro C. 2010. Antimycobacterial Metabolites from Plectranthus: Royleanone Derivatives against Mycobacterium tuberculosis Strains. Chem Biodivers. 7(4):922–932.
  • Sepúlveda B, Astudillo L, Rodríguez JA, Yáñez T, Theoduloz C, Schmeda-Hirschmann G. 2005. Gastroprotective and cytotoxic effect of dehydroabietic acid derivatives. Pharmacol Res. 52(5):429–437.
  • Smirnova IE, Tret’yakova EV, Flekhter OB, Spirikhin LV, Galin FZ, Tolstikov GA, Starikova ZA, Korlyukov AA. 2008. Synthesis, structure, and acylation of dihydroquinopimaric acid hydroxyl derivatives. Russ J Org Chem. 44(11):1598–1605.
  • Smirnova IE, Kazakova OB, Loesche A, Hoenke S, Csuk R. 2020. Evaluation of cholinesterase inhibitory activity and cytotoxicity of synthetic derivatives of di- and triterpene metabolites from Pinus silvestris and Dipterocarpus alatus resins. Med Chem Res. doi:10.1007/s00044-020-02566-9.
  • Smirnova IE, Tret'yakova EV, Kazakova OB, Starikova ZA, Fedyanin IV. 2009. Molecular and crystal structure of a new compound methyl-18R-13-isopropyl-10a,7-dimethyl-4-oxo- 1-oxahexacyclo. 12.4.0.0 5a,4a.0 13,12 0 1,1a.0 10a,6a]heneicosane7-Carboxylate. J Struct Chem. 50:378–380.
  • Spivak AY, Khalitova RR, Nedopekina DA, Gubaidullin RR. 2020. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation. Steroids. 154:108530.
  • Sychrová A, Koláriková I, Žemlička M, Šmejkal K. 2020. Natural compounds with dual antimicrobial and anti-inflammatory effects. Phytochem Rev. 19(6):1471–1502.
  • Tretyakova EV, Smirnova IE, Kazakova OB, Tolstikov GA, Yavorskaya NP, Golubeva IS, Pugacheva RB, Apryshko GN, Poroikov VV. 2014. Synthesis and anticancer activity of quinopimaric and maleopimaric acids’ derivatives. Bioorg Med Chem. 22(22):6481–6489.
  • Tret'yakova EV, Salimova EV, Parfenova LV. 2020. Synthesis, modification, and biological activity of propargylated methyl dihydroquinopimarates. Nat Prod Res. 12 :1–8.
  • Tret’yakova EV, Zakirova EF, Salimova EV, Kukovinets OS, Odinokov VN, Parfenova LV. 2018. Convenient one-pot synthesis of resin acid Mannich bases as novel anticancer and antifungal agents. Med Chem Res. 27(9):2199–2213.
  • Xu HT, Liu LL, Fan XT, Zhang GJ, Li YC, Jiang B. 2017. Identification of a diverse synthetic abietane diterpenoid library for anticancer activity. Bioorg Med Chem Lett. 27(3):505–510.
  • Zhang WM, Yang T, Pan XY, Liu XL, Lin HX, Gao ZB, Yang CG, Cui YM. 2017. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: modifications at C12 and C7. Eur J Med Chem. 127:917–927.
  • Zhang YY, Zhou CH. 2011. Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett. 21(14):4349–4352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.