Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 37, 2023 - Issue 18
139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel anti-hyperglycemic sulfated pyruvylated polysaccharide from marine macroalga Hydropuntia edulis

&
Pages 2987-2999 | Received 10 Jul 2022, Accepted 21 Oct 2022, Published online: 08 Nov 2022

References

  • Alencar POC, Lima GC, Barros FCN, Costa LE, Ribeiro CVP, Sousa WM, Sombra VG, Abreu CMW, Abreu ES, Pontes EO, et al. 2019. A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: in vitro and in vivo activities. Food Hydrocoll. 90:28–34.
  • Antony T, Chakraborty K. 2020. Anti-inflammatory polyether triterpenoids from the marine macroalga Gracilaria salicornia: newly described natural leads attenuate pro-inflammatory 5-lipoxygenase and cyclooxygenase-2. Algal Res. 47:101791.
  • Antony T, Chakraborty K, Dhara S. 2022. Sulfated galactofucan from seaweed Padina tetrastromatica attenuates proteolytic enzyme dipeptidyl-peptidase-4: a potential anti-hyperglycemic lead [published online ahead of print, 2022 Jan 17]. Nat Prod Res. 1–12. doi:10.1080/14786419.2022.2025802.
  • Barros FC, da Silva DC, Sombra VG, Maciel JS, Feitosa JP, Freitas AL, de Paula RC. 2013. Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh. Carbohydr Polym. 92(1):598–603.
  • Bedoux G, Caamal-Fuentes E, Boulho R, Marty C, Bourgougnon N, Freile-Pelegrín Y, Robledo D. 2017. Antiviral and cytotoxic activities of polysaccharides extracted from four tropical seaweed species. Nat Prod Commun. 12(6):1934578X1701200.
  • Bilan MI, Vinogradova EV, Shashkov AS, Usov AI. 2007. Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense (Bryopsidales, Chlorophyta). Carbohydr. Res. 342(3-4):586–596. 10.1016/j.carres.2006.11.008.
  • Chakraborty K, Dhara S. 2021. Polygalacto-fucopyranose biopolymer structured nanoparticle conjugate attenuates glucocorticoid-induced osteoporosis: an in vivo study. Int J Biol Macromol. 190:739–753. 10.1016/j.ijbiomac.2021.09.020. 34509519
  • Chakraborty K, Joseph D, Joy M, Raola VK. 2016. Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants. Food Chem. 212:778–788. 10.1016/j.foodchem.2016.06.039. 27374595
  • Chakraborty K, Antony T, Joy M. 2019a. Prospective natural anti-inflammatory drimanes attenuating pro-inflammatory 5-lipoxygenase from marine macroalga Gracilaria salicornia. Algal Res. 40:101472.
  • Chakraborty K, Krishnan S, Joy M. 2019b. Macrocyclic lactones from seafood Amphioctopus neglectus: newly described natural leads to attenuate angiotensin-II induced cardiac hypertrophy. Biomed Pharmacother. 110:155–167.
  • Chakraborty K, Krishnan S, Joy M. 2020a. Polygalactan from bivalve Crassostrea madrasensis attenuates nuclear factor-κB activation and cytokine production in lipopolysaccharide-activated macrophage. Carbohydr Polym. 249:116817.
  • Chakraborty K, Krishnan S, Joy M. 2020b. Sulfated N-acetylglucosamino-glucuronopyranosyl-arabinopyranan from seafood Amphioctopus neglectus attenuates angiotensin-II prompted cardiac hypertrophy. Int J Biol Macromol. 163:1223–1232.
  • Chiovitti A, Liao ML, Kraft GT, Munro SLA, Craik DJ, Bacic A. 1996. Cell wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales. Rhodophyta): highly methylated carrageenans from the genus Rhabdonia. Bot Mar. 39:47–60.
  • Cho M, Han JH, You S. 2011. Inhibitory effects of fucan sulfates on enzymatic hydrolysis of starch. Food Sci Technol. 44(4):1164–1171.
  • Coura CO, de Araújo IWF, Vanderlei ESO, Rodrigues JAG, Quinderé ALG, Fontes BP, de Queiroz INL, de Menezes DB, Bezerra MM, e Silva AAR, et al. 2012. Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin Pharmacol Toxicol. 110(4):335–341.
  • Ermakova SP, Menshova RV, Anastyuk SD, (Vishchuk) OSM, Zakharenko AM, Thinh PD, Ly BM, Zvyagintseva TN. 2016. Structure, chemical and enzymatic modification, and anticancer activity of polysaccharides from the brown alga Turbinaria ornata. J Appl Phycol. 28(4):2495–2505. 10.1007/s10811-015-0742-y.
  • Gunathilaka TL, Samarakoon K, Ranasinghe P, Peiris LDC. 2020. Antidiabetic potential of marine brown algae-a mini review. J Diabetes Res. 2020:1230218.
  • Kiwitt-Haschemie K, Renger A, Steinhart H. 1996. A comparison between reductive-cleavage and standard methylation analysis for determining structural features of galactomannans. Carbohydr Polym. 30(1):31–−35.
  • Kravchenko AO, Anastyuk SD, Glazunov VP, Sokolova EV, Isakov VV, Yermak IM. 2020. Structural characteristics of carrageenans of red alga Mastocarpus pacificus from sea of Japan. Carbohydr Polym. 229:115518 10.1016/j.carbpol.2019.115518. PMC: 31826457
  • Krishnan S, Chakraborty K, Dhara S. 2021. Biomedical potential of β-chitosan from cuttlebone of cephalopods. Carbohydr Polym. 273:118591.
  • Maneesh A, Chakraborty K. 2018. Pharmacological potential of sulfated polygalactopyranosyl-fucopyranan from the brown seaweed Sargassum wightii. J Appl Phycol. 30(3):1971–1988.
  • Nasab SB, Homaei A, Karami L. 2020. Kinetic of α-amylase inhibition by Gracilaria corticata and Sargassum angustifolium extracts and zinc oxide nanoparticles. Biocatal Agric Biotechnol. 23:101478.
  • Okada Y, Miyauchi N, Suzuki K, Kobayahsi T, Tsutsui C, Mayuzumi K, Okuyama T. 1995. Search for naturally occurring substances to prevent the complications of diabetes: II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem Pharm Bull (Tokyo). 43(8):1385–1387.
  • Patil P, Mandal S, Tomar ST, Anand S. 2015. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr. 54(6):863–880.
  • Pomin VH, Mourão PA. 2008. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 18(12):1016–1027.
  • Pozharitskaya ON, Obluchinskaya ED, Shikov AN. 2020. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Mar Drugs. 18(5):275.
  • Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. 2015. Correction: a higher level classification of all living organisms. PLoS One. 10(6):e0130114.
  • Srivastava A, Kumar R. 2013. Synthesis and characterization of acrylic acid-g-(κ-carrageenan) copolymer and study of its application. Int J Carbohydr Chem. 2013:1–8.
  • Staub A. 1965. Removal of protein-Sevag method. Methods Carbohydr Chem. 5:5–6.
  • Sudharsan S, Subhapradha N, Seedevi P, Shanmugam V, Madeswaran P, Shanmugam A, Srinivasan A. 2015. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). Int J Biol Macromol. 81:1031–1038.
  • Vijayalakshmi S. 2015. Screening and anti-inflammatory activity of methanolic and aqueous extracts of seaweed Gracilaria edulis. Int J Mod Chem Appl Sci. 2(4):248–250.
  • Wang J, Hu S, Nie S, Yu Q, Xie M. 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev. 2016:5692852.
  • Wang YH, Zhang F, Diao H, Wu R. 2019. Covalent inhibition mechanism of antidiabetic drugs-vildagliptin vs saxagliptin. ACS Catal. 9(3):2292–2302.
  • Xie M, Ye H, Wang H, Charpin-El Hamri G, Lormeau C, Saxena P, Stelling J, Fussenegger M. 2016. β-cell-mimetic designer cells provide closed-loop glycemic control. Science. 354(6317):1296–1301.
  • Yoshizawa Y, Tsunehiro J, Nomura K, Itoh M, Fukui F, Ametani A, Kaminogawa S. 1996. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa). Biosci Biotechnol Biochem. 60(10):1667–1671.
  • Zablackis E, Perez J. 1990. A partially pyruvated carrageenan from Hawaiian Grateloupia filicina (Cryptonemiales Rhodophyta). Bot Mar. 33:273–276.
  • Zhang D, Fujii I, Lin C, Ito K, Guan H, Zhao J, Shinohara M, Matsukura M. 2008. The stimulatory activities of polysaccharide compounds derived from algae extracts on insulin secretion in vitro. Biol Pharm Bull. 31(5):921–924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.