594
Views
28
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Plasticity of Mg–Gd alloys between 4 K and 298 K

, , &
Pages 134-165 | Received 20 Jul 2015, Accepted 19 Nov 2015, Published online: 08 Jan 2016

References

  • C.S. Roberts, Magnesium and its Alloys, Wiley, NJ, USA, 1960.
  • A. Akhtar and E. Teghtsoonian, Solid solution strengthening of magnesium single crystals---I alloying behaviour in basal slip, Acta Metall. 17 (1969), pp. 1339–1349.
  • M. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A-Phys. Metall. Mater. Sci. 12 (1981), pp. 409–418.
  • H. Tonda and S. Ando, Effect of temperature and shear direction on yield stress by slip in HCP metals, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 33 (2002), pp. 831–836; Annual Meeting of the TMS, New Orleans, LA, Feb 11–15, 2001.
  • A. Akhtar and E. Teghtsoonian, Solid solution strengthening of magnesium single crystals---I alloying behaviour in basal slip, Acta Metall. 17 (1969), pp. 1351–1356.
  • S. Agnew, and O. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast. 21 (2005), pp. 1161–1193; International Symposium on Plasticity, Quebec City, Canada, Jul 07--10, 2003.
  • S. Ando and H. Tonda, Non-basal slip in magnesium-lithium alloy single crystals, Mater. Trans. JIM(Japan). 41 (2000), pp. 1188–1191.
  • S. Ando, M. Tanaka, and H. Tonda, Pyramidal slip in magnesium alloy single crystals, in Magnesium Alloys 2003, Pts 1 and 2, Y. Kojima, T. Aizawa, K. Higashi, and S. Kamado, eds. 2003, pp. 87–92; Vol. 419-4 of Materials Science Forum 2nd International Conference on Platform Science and Technology for Advanced Magnesium Alloys, Osaka, Japan, Jan 26–30, 2003.
  • S. Sandlöbes, M. Friák, J. Neugebauer and D. Raabe, Basal and non-basal dislocation slip in Mg--Y, Mater. Sci. Eng.: A 576 (2013), pp. 61–68.
  • H. Yang, S. Yin, C. Huang, Z. Zhang, S. Wu, S. Li, and Y. Liu, EBSD Study on deformation twinning in AZ31 magnesium alloy during Quasi-in-Situ compression, Adv. Eng. Mater. 10 (2008), pp. 955–960.
  • L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of 10-12 extension twinning on the flow behavior of AZ31 Mg alloy, Acta Mater. 55 (2007), pp. 3899–3910.
  • R. Gehrmann, M. Frommert, and G. Gottstein, Texture effects on plastic deformation of magnesium, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 395 (2005), pp. 338–349.
  • P. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Int. Mater. Rev. 12 (1967), pp. 169–194.
  • E. Kelley, and W. Hosford, The deformation characteristics of textured magnesium, Trans. Met. Soc. AIME 242 (1968), pp. 5–13.
  • M.R. Barnett, Twinning and the ductility of magnesium alloys Part I: "Tension” twins, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 464 (2007), pp. 1–7.
  • M.R. Barnett, Mate. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 464 (2007), pp. 8–16.
  • H. Yoshinaga, T. Obara, and S. Morozumi, Twinning deformation in magnesium compressed along the C-axis, Mater. Sci. Eng. 12 (1973), pp. 255–264.
  • A. Salem, S. Kalidindi, and R. Doherty, Strain hardening of titanium: role of deformation twinning, Acta Mater. 51 (2003), pp. 4225–4237.
  • S. Kalidindi, A. Salem, and R. Doherty, Role of deformation twinning on strain hardening in cubic and hexagonal polycrystalline metals, Adv. Eng. Mater. 5 (2003), pp. 229–232.
  • S. Agnew, M. Yoo, and C. Tome, Acta Mater. 49 (2001), pp. 4277–4289.
  • Z. Basinski, M. Szczerba, M. Niewczas, J. Embury, and S. Basinski, The transformation of slip dislocations during twinning of copper-aluminum alloy crystals, Rev. Metall.-Cah. D Inf. Tech. 94 (1997), pp. 1037–1043.
  • M. Niewczas, Lattice correspondence during twinning in hexagonal close-packed crystals, Acta Mater. 58 (2010), pp. 5848–5857.
  • C.H. Caceres and A.H. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 462 (2007), pp. 193–196; International Symposium on Physics of Materials (ISPMA), Prague, Czech Republic, Aug 30-Sep 02, 2005.
  • C. Cáceres, P. Lukáč, and A. Blake, Strain hardening due to {1012} twinning in pure magnesium, Philos. Mag. 88 (2008), pp. 991–1003.
  • B. Bhattacharya and M. Niewczas, Work-hardening behaviour of Mg single crystals oriented for basal slip, Philos. Mag. 91 (2011), pp. 2227–2247.
  • L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy, Mater. Sci. Eng.: A 445 (2007), pp. 302–309.
  • M. Barnett, Z. Keshavarz, A. Beer, and D. Atwell, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn, Acta Mater. 52 (2004), pp. 5093–5103.
  • M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Deformation twinning in AZ31: Influence on strain hardening and texture evolution, Acta Mater. 58 (2010), pp. 6230–6242.
  • K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scr. Mater. 63 (2010), pp. 725–730.
  • M. Lentz, M. Klaus, R.S. Coelho, N. Schaefer, F. Schmack, W. Reimers, and B. Clausen, Analysis of the Deformation Behavior of Magnesium-Rare Earth Alloys Mg-2 pct Mn-1 pct Rare Earth and Mg-5 pct Y-4 pct Rare Earth by In Situ Energy-Dispersive X-ray Synchrotron Diffraction and Elasto-Plastic Self-Consistent Modeling, Metall. Mater. Trans. A 45 (2014), pp. 5721–5735.
  • M. Butt, and P. Feltham, Solid-solution hardening, J. Mater. Sci. 28 (1993), pp. 2557–2576.
  • R. Fleisher, Solute hardening of close-packed solid solutions, Acta Metall. 9 (1961), pp. 996–1000.
  • R. Fleischer, Substitutional solution hardening, Acta Metall. 11 (1963), pp. 203–209.
  • R. Labusch, A statistical theory of solid solution hardening, Phys. Status Solidi B 41 (1970), pp. 659–669.
  • W.K. Honeycombe, The plastic deformation of metals, Edward Arnold, London, 1975; W 1 Z 8 LL. 1975, 477 p. (Book).
  • H. Suzuki, The yield strength of binary alloys, Dislocations and mechanical properties of crystals, New York, (1957), pp. 361–390.
  • J. Fisher, On the strength of solid solution alloys, Acta Metall. 2 (1954), pp. 9–10.
  • P. Flinn, Solute hardening of close-packed solid solutions, Acta Metall. 6 (1958), pp. 631–635.
  • C. Cáceres and A. Blake, Solid-solution hardening and softening in Mg--Zn alloys, Phys. Status Solidi A 194 (2002), pp. 147–158.
  • R. Quimby, J. Mote, and J. Dorn, Yield point phenomena in magnesium-lithium single crystals, Amer. Soc. Metals, Trans. Quart. 55 (1962), pp. 149.
  • H. Yoshinaga, Twinning deformation in magnesium compressed along the C-axis, Trans. Jpn Inst. Met. 4 (1963), pp. 134–141.
  • Y. Chino, M. Kado, T. Ueda, and M. Mabuchi, Solid Solution Strengthening for Mg-3.0 Mass Pct (2.71 At. Pct) Al and Mg-0.06 Mass Pct (0.036 At. Pct) Ca Alloys, Metall. Mater. Trans. A 42 (2011), pp. 1965–1973.
  • A. Akhtar and E. Teghtsoonian, Substitutional solution hardening of magnesium single crystals, Philos. Mag. 25 (1972), pp. 897–916.
  • N. Stanford, D. Atwell, and M.R. Barnett, The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys, Acta Mater. 58 (2010), pp. 6773–6783.
  • M. Suzuki, T. Kimura, J. Koike, and K. Maruyama, Effects of zinc on creep strength and deformation substructures in Mg--Y alloy, Mater. Sci. Eng.: A 387 (2004), pp. 706–709.
  • M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa, Dislocations and mechanical properties of crystals, Mater. Sci. Eng.: A 319 (2001), pp. 751–755.
  • L.L. Rokhlin, Magnesium alloys containing rare earth metals: Structure and properties, Taylor & Francis, London, 2003.
  • L. Rokhlin, Dependence of the rare earth metal solubility in solid magnesium on its atomic number, J. Phase Equilib. 19 (1998), pp. 142–145.
  • L. Gao, R. Chen, and E. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd. 481 (2009), pp. 379–384.
  • Y. Wu and W. Hu, Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y) Alloys with Atomistic Simulation, Phys. Res. Int. 2008 (2008), pp. 1–4.
  • N. Stanford, Micro-alloying Mg with Y, Ce, Gd and La for texture modification---A comparative study, Mater. Sci. Eng.: A 527 (2010), pp. 2669–2677.
  • N. Stanford and M. Barnett, The origin of "rare earth" texture development in extruded Mg-based alloys and its effect on tensile ductility, Mater. Sci. Eng.: A 496 (2008), pp. 399–408.
  • N. Stanford, I. Sabirov, G. Sha, A. La Fontaine, S. Ringer, and M. Barnett, Effect of Al and Gd solutes on the strain rate sensitivity of magnesium alloys, Metall. Mater. Trans. A 41, (2010), pp. 734–743.
  • L. Jiang, J. Jonas, and R. Mishra, Effect of dynamic strain aging on the appearance of the rare earth texture component in magnesium alloys, Mater. Sci. Eng.: A 528 (2011), pp. 6596–6605.
  • T. Al-Samman and X. Li, Sheet texture modification in magnesium-based alloys by selective rare earth alloying, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 528 (2011), pp. 3809–3822.
  • M. Bugnet, A. Kula, M. Niewczas, and G. Botton, Segregation and clustering of solutes at grain boundaries in Mg--rare earth solid solutions, Acta Mater. 79 (2014), pp. 66–73.
  • Q. Peng, X. Hou, L. Wang, Y. Wu, Z. Cao, and L. Wang, Microstructure and mechanical properties of high performance Mg--Gd based alloys, Mater. Des. 30 (2009), pp. 292–296.
  • B. Bhattacharya, Plastic deformation behavior of pure magnesium in the temperature range 4.2 K-300K, McMaster University, 2006.
  • S. Ando, T. Gotoh, and H. Tonda, Molecular dynamics simulation of c+ a dislocation core structure in hexagonal-close-packed metals, Metall. Mater. Trans. A 33 (2002), pp. 823–829.
  • G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA.
  • M. Niewczas, Z.S. Basinski, S.J. Basinski, and J.D. Embury, Deformation of Copper Single Crystals to Large Strains at 4.2 K - I. Mechanical Response and Electrical Resistivity, Philos. Mag. A 81 (2001), pp. 1121–1142.
  • C. Caceres, G.E. Mann, and J. Griffiths, Grain size hardening in Mg and Mg-Zn solid solutions, Metall. Mater. Trans. A 42 (2011), pp. 1950–1959.
  • G.S. Rao and Y. Prasad, Grain boundary strengthening in strongly textured magnesium produced by hot rolling, Metall. Trans. A 13 (1982), pp. 2219–2226.
  • D. Wilson and J. Chapman, Effects of preferred orientation on the grain size dependence of yield strength in metals, Philoso. Mag. 8 (1963), pp. 1543–1551.
  • M. Meyers, O. Vöhringer, and V. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001), pp. 4025–4039.
  • M. Barnett, A rationale for the strong dependence of mechanical twinning on grain size, Scr. Mater. 59 (2008), pp. 696–698.
  • N. Ono, R. Nowak, and S. Miura, Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium, Mater. Lett. 58 (2004), pp. 39–43.
  • I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. CastilloRivera-Diaz-del, Understanding the factors influencing yield strength on Mg alloys, Acta Mater. 75 (2014), pp. 287–296.
  • Y. Wang and H. Choo, Influence of texture on Hall-Petch relationships in an Mg alloy, Acta Mater. 81 (2014), pp. 83–97.
  • J. Wang, J.P. Hirth, and C.N. Tome, 1 2 Twinning nucleation mechanisms in hexagonal-close-packed crystals, Acta Mater. 57 (2009), pp. 5521–5530.
  • E. Ball and P. Prangnell, Tensile-compressive yield asymmetries in high strength wrought magnesium alloys, Scr. Metall. Mater. 31 (1994), pp. 111–116.
  • L. Mackenzie, B. Davis, F. Humphreys, and G. Lorimer, The deformation, recrystallisation and texture of three magnesium alloy extrusions, Mater. Sci. Technol. 23 (2007), pp. 1173–1180.
  • J. Bohlen, P. Dobron, J. Swiostek, D. Letzig, F. Chmelik, P. Lukac, and K.U. Kainer, On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 462 (2007), pp. 302–306; 10th International Symposium on Physics of Materials (ISPMA), Prague, Czech Republic, Aug 30--Sep 02, 2005.
  • T. Tsuru and D.C. Chrzan, Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective, Sci. Rep. 5 (2015), pp. 1–8.
  • S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe, The relation between ductility and stacking fault energies in Mg and Mg--Y alloys, Acta Mater. 60 (2012), pp. 3011–3021.
  • M. Jobba, R. Mishra, and M. Niewczas, Flow stress and work-hardening behaviour of Al--Mg binary alloys, Int. J. Plast. 65 (2015), pp. 43–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.