415
Views
58
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Experimental Cosserat elasticity in open-cell polymer foam

&
Pages 93-111 | Received 27 Jul 2015, Accepted 23 Nov 2015, Published online: 04 Jan 2016

References

  • L.J. Gibson and M.F. Ashby, Cellular Solids, 2nd ed., Pergamon, Cambridge, 1997.
  • E. Cosserat and F. Cosserat, Theorie des Corps Deformables, Hermann et Fils, Paris, 1909.
  • R.D. Mindlin, Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1 (1965), pp. 265–271.
  • A.C. Eringen, Theory of micropolar elasticity, in Fracture, Vol. 1, H. Liebowitz, eds. Academic Press, New York, 1968, pp. 621–729.
  • L. Ilcewicz, T.C. Kennedy, and C. Shaar, Experimental application of a generalized continuum model to nondestructive testing. J. Mater. Sci. Lett. 4 (1985), pp. 434–438.
  • S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids. J. Elasticity 13 (1983), pp. 125–147.
  • R.D. Gauthier and W.E. Jahsman, A quest for micropolar elastic constants. J. Appl. Mech. 42 (1975), pp. 369–374.
  • G.V. Krishna Reddy and N.K. Venkatasubramanian, On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45 (1978), pp. 429–431.
  • R.D. Mindlin, Effect of couple stresses on stress concentrations. Exp. Mech. 3 (1963), pp. 1–7.
  • S.P. Timoshenko, History of Strength of Materials, Dover, New York, 1983.
  • W.T. Koiter, Couple-stresses in the theory of elasticity, Parts I and II. Proc. Koninklijke Ned. Akad. Wetenshappen 67 (1964), pp. 17–44.
  • R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16 (1964), pp. 51–78.
  • R.S. Lakes, Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22 (1986), pp. 55–63.
  • W.B. Anderson and R.S. Lakes, Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29 (1994), pp. 6413–6419.
  • R.S. Lakes, On the torsional properties of single osteons. J. Biomech. 28 (1995), pp. 1409–1410.
  • R. Mora and A.M. Waas, Measurement of the Cosserat constant of circular cell polycarbonate honeycomb. Philos. Mag. A 80 (2000), pp. 1699–1713.
  • H.C. Park and R.S. Lakes, Torsion of a micropolar elastic prism of square cross section. Int. J. Solids Struct. 23 (1987), pp. 485–503.
  • H.C. Park and R.S. Lakes, Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19 (1986), pp. 385–397.
  • R.S. Lakes, D. Gorman and W. Bonfield, Holographic screening method for microelastic solids. J. Mater. Sci. 20 (1985), pp. 2882–2888.
  • W.B. Anderson, R.S. Lakes and M.C. Smith, Holographic evaluation of warp in the torsion of a bar of cellular solid. Cell. Polym. 14 (1995), pp. 1–13.
  • R.D. Nyilas, M. Kobas and R. Spolenak, Synchrotron X-ray microdiffraction reveals rotational plastic deformation mechanisms in polycrystalline thin films. Acta Mater. 57 (2009), pp. 3738–3753.
  • Foamade industries, Auburn Hills, MI,
  • M. Brodt, L.S. Cook and R.S. Lakes, Apparatus for determining the properties of materials over ten decades of frequency and time: Refinements. Rev. Sci. Instrum. 66 (1995), pp. 5292–5297.
  • T. Lee, R.S. Lakes and A. Lal, Resonant ultrasound spectroscopy for measurement of mechanical damping: comparison with broadband viscoelastic spectroscopy. Rev. Sci. Instrum. 71 (2000), pp. 2855–2861.
  • Y.C. Wang, R.S. Lakes and A. Butenhoff, Influence of cell size on re-entrant transformation of negative Poisson’s ratio reticulated polyurethane foams. Cell. Polym. 20 (2001), pp. 373–385.
  • R. Brezny and D.J. Green, Characterization of edge effects in cellular materials. J. Mater. Sci. 25(11) (1990), pp.4571–4578.
  • C. Tekoglu, L.J. Gibson, T. Pardoen, and P.R. Onck, Size effects in foams: Experiments and modeling: Progress Mater. Sci. 56 (2011), pp. 109–138.
  • P.M. Buechner and R.S. Lakes, Size effects in the elasticity and viscoelasticity of bone. Biomech. Model. Mechanobiol. 1(4) (2003), pp. 295–301.
  • R.S. Lakes and S. Saha, Cement line motion in bone. Science 204 (1979), pp. 501–503.
  • A. Askar and A.S. Cakmak, A structural model of a micropolar continuum. Int. J. Eng. Sci. 6 (1968), pp. 583–589.
  • T. Tauchert, A lattice theory for representation of thermoelastic composite materials. Recent Adv. Eng. Sci. 5 (1970), pp. 325–345.
  • G. Adomeit, Determination of elastic constants of a structured material, in Mechanics of Generalized Continua, E. Kröner, ed. IUTAM Symposium, Freudenstadt, Stuttgart, Springer, Berlin, 1967,
  • A. Spadoni and M. Ruzzene, Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60 (2012), pp. 156–171.
  • R.S. Lakes and W.J. Drugan, Bending of a Cosserat elastic bar of square cross section - theory and experiment. J. Appl. Mech. 82(9) (2015), pp. 091002.
  • C.B. Banks and M. Sokolowski, On certain two-dimensional applications of the couple stress theory. Int. J. Solids Struct. 4(1) (1968), pp. 15–29.
  • A.J. Wang and D.L. McDowell, In-plane stiffness and yield strength of periodic metal honeycombs. J. Eng. Mater. Trans. ASME 126 (2004), pp. 137–156.
  • F. Dos Reis and J.F. Ganghoffer, Construction of micropolar continua from the homogenization of repetitive planar lattices, in Mechanics of Generalized Continua, Advanced Structured Materials, Vol. 7, Chapter 9 H. Altenbach, G. Maugin, and V. Erofeev, eds. Springer, Berlin, 2011, pp. 193–217.
  • F. Triawan, K. Kishimoto, T. Adachi, K. Inaba, T. Nakamura and T. Hashimura, The elastic behavior of aluminum alloy foam under uniaxial loading and bending conditions. Acta Materialia 60 (2012), pp. 3084–3093.
  • A.C. Eringen, Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12) (1990), pp. 1291–1301.
  • A. Burteau, F. N’Guyen, J.D. Bartout, S. Forest, Y. Bienvenu, S. Saberi and D. Naumann, Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int. J. Solids Struct. 49 (2012), pp. 2714–2732.
  • C.P. Chen and R.S. Lakes, Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular materials. Cell. Polym. 8(5) (1989), pp. 343–359.
  • T. Dillard, S. Forest, and P. Ienny, Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, Eur. J. Mech. A, Solids. 25 (2006), pp. 526–549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.