367
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Structural, magnetic, and physical properties of La(1–x)MnO3±δ nano-manganite

, , &
Pages 286-300 | Received 09 Sep 2015, Accepted 09 Dec 2015, Published online: 21 Jan 2016

References

  • A.P. Ramirez, Colossal magnetoresistance, J. Phys.: Condens. Matter 9 (1997), pp. 8171–8199.
  • Y. Tokura, Colossal magnetoresistive oxides (advances in condensed matter science), Gordon and Breach Science publishers, Amsterdam, 2000; Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69 (2006), pp. 797–851.
  • V. Markovich, I. Fita, D. Mogilyansky, A. Wisniewski, R. Puzniak, L. Titelman, L. Vradman, M. Herskowitz, and G. Gorodetsky, Magnetic properties of nanocrystalline La1−xMnO3+δ manganites: size effects, J. Phys.: Condens. Matter. 19 (2007), 20pp. doi:10.1088/0953-8984/19/34/346210
  • T. Sarkar, A.K. Raychaudhuri, A.K. Bera, and S.M. Yusuf, Effect of size reduction on the ferromagnetism of the manganite La1−xCaxMnO3 (x=0.33), New J. Phys. 12 (2010), pp. 123026.10.1088/1367-2630/12/12/123026
  • B. Ghosh, V. Siruguri, A.K. Raychaudhuri, and T. Chatterji, Effect of size reduction on the structural and magnetic order in LaMnO3+δ (δ ≈ 0.03) nanocrystals: a neutron diffraction study, J. Phys.: Condens. Matter 26 (2014), 025603pp. doi:10.1088/0953-8984/26/2/025603
  • I. Loa, P. Adler, A. Grzechnik, K. Syassen, U. Schwarz, M. Hanfland, G. Rozenberg, P. Gorodetsky, and M.P. Pasternak, Pressure-Induced Quenching of the Jahn-Teller Distortion and Insulator-to-Metal Transition in LaMnO3, Phys. Rev. Lett. 87 (2001), 4pp. doi:10.1103/PhysRevLett.87.12550110.1103/PhysRevLett.87.125501
  • J.S. Zhou, Y. Uwatoko, K. Matsubayashi, and J.B. Goodenough, Breakdown of magnetic order in Mott insulators with frustrated superexchange interaction, Phys. Rev. B 78 (2008), 4pp. doi:10.1103/PhysRevB.78.22040210.1103/PhysRevB.78.220402
  • A.Y. Ramos, N.M. Souza-Neto, H.C.N. Tolentino, O. Bunau, Y. Joly,S. Grenier , J.P. Itié, A.M. Flank, P. Lagarde, and A. Caneiro, Bandwidth-driven nature of the pressure-induced metal state of LaMnO3, Europhys. Lett. 96 (2011), pp. 36002–36007.10.1209/0295-5075/96/36002
  • S. de Brion, F. Ciorcas, G. Chouteau, P. Lejay, P. Radaelli, and C. Chaillout, Magnetic and electric properties of La1−δMnO3, Phys. Rev. B 59 (1999), pp. 1304–1310.10.1103/PhysRevB.59.1304
  • P. Mondal, D. Bhattacharya, and P. Mandal, Current-driven orbital order-disorder transition in LaMnO3, Phys. Rev. B 84 (2011), 6 pp. doi:10.1103/PhysRevB.84.07511110.1103/PhysRevB.84.075111
  • R. Nath, A.K. Raychaudhuri, Y.M. Mukovskii, P. Mondal, D. Bhattacharya, and P. Mandal, Electric field driven destabilization of the insulating state in nominally pure LaMnO3, J. Phys.:Condens. Matter 25 (2013), 22 pp. doi:10.1088/0953-8984/25/15/155605
  • E. Dagotto. Nanoscale Phase Separation and Colossal Magnetoresistance, Springer Series in Solid State Physics Vol. 136, Berlin, Springer, 2003.
  • J.B.Goodenough, Rare earth-manganese perovskites Handbook on the Physics and Chemistry of Rare Earth Vol 33, Chapter 214, K.A. Gschneidner Jr., J-C.G. Bunzli, and V. Pecharsky, eds., Elsevier Science, Amsterdam, 2003, pp. 249–344.
  • J.A.M. Van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, and H.W. Zandbergen, The Defect Chemistry of LaMnO3±δ: 2. Structural Aspects of LaMnO3+δ, J. Solid State Chem. 110 (1994), pp. 100; 10.1006/jssc.1994.1141 J.A.M. van Roosmalen and E.H.P. Cordfunke, J. Solid State Chem. 110–105 (1994), pp. 106–108.
  • J. Topfer and J.B. Goodenough, LaMnO3+Δ revisited, J. Solid State Chem. 130 (1997), pp. 117–128; J. Topfer and J.B. Goodenough, Transport and Magnetic Properties of the Perovskites La1-yMnO3 and LaMn1-zO3, Chem. Mater. 9 (1997), pp. 1467–1474.
  • C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82 (1951), pp. 403–405.10.1103/PhysRev.82.403
  • C. Ritter, M.R. Ibarra, J.M. De Teresa, P.A. Algarabel, C. Marquina, J. Blasco, J. García, S. Oseroff, and S.W. Cheong, Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ, Phys. Rev. B 56 (1997), pp. 8902–8911.10.1103/PhysRevB.56.8902
  • M. Verelst, N. Rangavittal, C.N.R. Rao, and A. Rousset, Metal-Insulator Transitions in Anion-Excess LaMnO3+δ Controlled by the Mn4+ Content, J. Solid State Chem. 104 (1993), pp. 74–80.10.1006/jssc.1993.1142
  • I. Maurin, P. Barboux, Y. Lassailly, J.P. Boilot, F. Villain, and P. Dordor, Charge-carrier localization on Mn surface sites in granular LaMnO3+delta samples, J. Solid State Chem. 160 (2001), pp. 123–133.
  • I. Marozau, P.T. Das, M. Döbeli, J.G. Storey, M.A. Uribe-Laverde, S. Das, C. Wang, M. Rössle, and C. Bernhard, Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO3 thin films grown by pulsed laser deposition, Phys. Rev. B 89 (2014), 16 pp. doi:10.1103/PhysRevB.89.17442210.1103/PhysRevB.89.174422
  • J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, and K.J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes, Nat. Mat. 13 (2014), pp. 726–732.10.1038/nmat4000
  • M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, and M. Salavati-Niasari, Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles, Appl. Surf. Sci. 318 (2014), pp. 213–217.10.1016/j.apsusc.2014.03.087
  • X. Zhou, J. Xue, D. Zhou, Z. Wang, Y. Bai, X. Wu, X. Liu, and J. Meng, Mn Valence, Magnetic, and Electrical Properties of LaMnO3+δ Nanofibers by Electrospinning, App. Mater. Interfaces 2 (2010), pp. 2689–2693.
  • T. Zhu, B.G. Shen, J.R. Sun, H.W. Zhao. and W.S. Zhan, Surface spin-glass behavior in La2/3Sr1/3MnO3 nanoparticles, Appl. Phys. Lett. 78 (2001), pp. 3863–3865.10.1063/1.1379597
  • M.A. L´opez-Quintela, L.E. Hueso, J. Rivas, and F. Rivadulla, Intergranular magnetoresistance in nanomanganites, Nanotechnology 14 (2003), pp. 212–219.
  • P. Dey and T.K. Nath, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface, Phys. Rev. B 73 (2006), 14 pp. doi:10.1103/PhysRevB.73.21442510.1103/PhysRevB.73.214425
  • S. Kundu and T.K. Nath, Size-induced metallic state in nanoparticles of ferromagnetic insulating Nd0.8Sr0.2MnO3, J. Phys.: Condens. Matter 22 (2010), 10 pp. doi:10.1088/0953-8984/22/50/506002
  • P.T. Das and A.K. Nigam, and T.K. Nath, Emergence of size induced metallic state in the ferromagnetic insulating Pr0.8Sr0.2MnO3 manganite: Breaking of surface polarons, J Adv. Phys. 8 (2015), pp. 2084–2093.
  • G. Dezanneau, M. Audier, H. Vincent, C. Meneghini, and E. Djurado, Structural characterization of La1−xMnO3±δ by x-ray diffraction and x-ray absorption spectroscopy, Phys. Rev. B 69 (2004), 11 pp. doi:10.1103/PhysRevB.69.014412; 10.1103/PhysRevB.69.014412 G. Dezanneau, A. Sin, H. Roussel, M. Audier, and H. Vincent, Synthesis and characterisation of La 1− x MnO3±δ nanopowders prepared by acrylamide polymerisation, J. Solid State Commun. 121 (2002), pp. 133–137; G. Dezanneau, A. Sin, H. Roussel, M. Audier, and H. Vincent, Magnetic properties related to structure and complete composition analyses of nanocrystalline La1−xMn1−yO3 powders, J. Solid State Chem. 173 (2003), pp. 216–226. doi:10.1016/S0022-4596(03)00027-6.
  • N. Das, P. Mondal, and D. Bhattacharya, Particle-size dependence of orbital order-disorder transition in LaMnO3, Phys. Rev. B 74 (2006), 6 pp. doi:10.1103/PhysRevB.74.01441010.1103/PhysRevB.74.014410
  • J. Rivas, L.E. Hueso, A. Fondado, F. Rivadulla, and M.A. L´opez-Quintela Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites, J. Magn. Magn. Mater. 221 (2000), pp. 57–62; L.E. Hueso, P. Sande, D.R. Migu´ens, J. Rivas, F. Rivadulla, and M.A. L´opez-Quintela, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3−δ nanoparticles synthesized by sol–gel techniques, J. Appl. Phys. 91 (2002), pp. 9943–9947.
  • J.J. Neumeier, M.F. Hundley, J.D. Thompson, and R.H. Heffner, Substantial pressure effects on the electrical resistivity and ferromagnetic transition temperature of La1−xCaxMnO3, Phys. Rev. B 52 (1995), pp. R7006–R7009.10.1103/PhysRevB.52.R7006
  • L. Balcells, J. Fontcuberta, B. Martínez, and X. Obradors, High-field magnetoresistance at interfaces in manganese perovskites, Phys. Rev. B 58 (1998), pp. R14697–R14700.10.1103/PhysRevB.58.R14697
  • Z. Arnold, K. Kamenev, M.R. Ibarra, P.A. Algarabel, C. Marquina, J. Blasco, and J. García, Pressure effect on yttrium doped La0.60Y0.07Ca0.33MnO3 compound, Appl. Phys. Lett. 67 (1995), pp. 2875–287710.1063/1.114814
  • B.C. Hauback, H. Fjellvåg, and N. Sakai, Effect of Nonstoichiometry on Properties of La1−tMnO3+δ: III. Magnetic Order Studied by Powder Neutron Diffraction, J. Solid State Chem. 124 (1996), pp. 43–51.10.1006/jssc.1996.0205
  • V. Ferris, L. Brohan, M. Ganne, and M. Tournoux, Structural aspects, density measurements and susceptibility behavior of the defect perovskite LaMnO3 with 0.8≤La/Mn≤1 and 2.80≤O/Mn≤3.58, Eur. J. Solid State Inorg. Chem. 32 (1995), pp. 131–144.
  • A. Arulraj, R. Mahesh, G.N. Subbanna, R. Mahendiran, A.K. Raychaudhuri, and C.N.R. Rao, Insulator–Metal Transitions, Giant Magnetoresistance, and Related Aspects of the Cation-Deficient LaMnO3Compositions La1−δMnO3and LaMn1−δ′O3, J. Solid State Chem. 127 (1996), pp. 87–91.10.1006/jssc.1996.0360
  • B. Boucher, R. Bhul, and M. Perrin, Magnetic Structure of Mn3O4 by Neutron Diffraction, J. Appl. Phys. 42 (1971), pp. 1615–1617.10.1063/1.1660364
  • A. Shahee, D. Kumar, C. Shekhar, and N.P. Lalla, Kinetic arrest of first-order R3c to Pbnm phase-transition in supercooled LaxMnO3+δ (X = 1 and 0.9), J. Phys.: Condens. Matter 24 (2012), 9 pp. doi:10.1088/0953-8984/24/27/279601
  • S. Chandra, A. Biswas, S. Datta, B. Ghosh, V. Siruguri, A.K. Raychaudhuri, M.H. Phan, and H. Srikanth, Evidence of a canted magnetic state in self-doped LaMnO(3+δ) (δ = 0.04): a magnetocaloric study, J. Phys.: Condens. Matter 24 (2012), 8 pp. doi: 10.1088/0953-8984/24/36/366004
  • S. Ponce, M.A. Pĕna, and J.L.G. Fierro, Surface PropErties and Catalytic Performance in Methane Combustion of Sr-Substituted Lanthanum Manganites, Appl. Catal. B 24 (2000), pp. 193–205.10.1016/S0926-3373(99)00111-3
  • E. Beyreuther, S. Grafström, L.M. Eng, C. Thiele, and K. Dörr, XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content, Phys. Rev. B 73 (2006), 9 pp. doi:10.1103/PhysRevB.73.15542510.1103/PhysRevB.73.155425
  • Q.-H. Wu, M. Liu, and W. Jaegermann, X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3, Mater. Lett. 59 (2005), pp. 1980–1983.10.1016/j.matlet.2005.01.038
  • H.W. Nesbitt and D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation, Am. Mineral. 83 (1998), pp. 305–315.
  • V. Markovich, G. Jung, I. Fita, D. Mogilyansky, X. Wu, A. Wisniewski, R. Puzniak, N. Froumin, L. Titelman, L. Vradman, M. Herskowitz, and G. Gorodetsky, Magnetotransport in granular LaMnO3+δ manganite with nano-sized particles, J. Phys. D: Appl. Phys. 41 (2008), 9 pp. doi:10.1088/0022-3727/41/18/18500110.1088/0022-3727/41/18/185001
  • T. Zhang, T.F. Zhou, T. Qian, and X.G. Li, Particle size effects on interplay between charge ordering and magnetic properties in nanosized La0.25Ca0.75MnO3, Phys. Rev. B 76 (2007), 7 pp. doi:10.1103/PhysRevB.76.17441510.1103/PhysRevB.76.174415
  • E. Granado, N.O. Moreno, A. García, J.A Sanjurjo, C. Rettori, I. Torriani, S.B. Oseroff, J.J. Neumeier,, K.J. McClellan, S.W. Cheong, Y. Tokura, Phonon Raman scattering in R1−xAxMnO3+δ (R=La,Pr; A=Ca,Sr), Phys. Rev. B 58 (1998), pp. 11435–11440.10.1103/PhysRevB.58.11435
  • H. Khanduri, M.C. Dimri, S. Vasala, S. Leinberg, R. Lõhmus, T.V. Ashworth, A. Mere, Magnetic and structural studies of LaMnO3 thin films prepared by atomic layer deposition, J. Phys. D: Appl. Phys. 46 (2013), 8 pp. doi:10.1088/0022-3727/46/17/17500310.1088/0022-3727/46/17/175003
  • N.N. Kovaleva, O.E. Kusmartseva, K.I. Kugel, A.A. Maksimov, D. Nuzhnyy, A.M. Balbashov, E.I. Demikhov, A. Dejneka, V.A. Trepakov, F.V. Kusmartsev, and A.M. Stoneham, Anomalous multi-order Raman scattering in LaMnO3: a signature of quantum lattice effects in a Jahn-Teller crystal, J. Phys.: Condens. Matter 25 (2013), 8 pp. doi:10.1088/0953-8984/25/15/155602
  • A. Dubey and V.G. Sathe, The effect of magnetic order and thickness in the Raman spectra of oriented thin films of LaMnO3, J. Phys.: Condens. Matter 19 (2007), 10 pp. doi:10.1088/0953-8984/19/34/346232; A. Dubey, V.G. Sathe, and R. Rawat, Signature of Jahn–Teller distortion and oxygen stoichiometry in Raman spectra of epitaxial LaMnO3+δ thin films, J. Appl. Phys. 104 (2008), 6 pp. doi:10.1063/1.3040718
  • M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, and C. Thomsen, Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3, Phys. Rev. B 59 (1999), pp. 4146–4153.10.1103/PhysRevB.59.4146
  • G.N Zhizhin, B.N. Mavrin, and V.F Shabanov, Optical Vibrational Spectra of Crystals, Nauka, Moscow, 1984, pp. 232.
  • M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, and C.W. Chu, Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3, Phys. Rev. B 57 (1998), pp. 2872–2877.10.1103/PhysRevB.57.2872
  • R. Kilian and G. Khaliullin, Orbital polarons in the metal-insulator transition of manganites, Phys. Rev. B 60 (1999), 4 pp. doi:10.1103/PhysRevB.60.1345810.1103/PhysRevB.60.13458
  • J.A. Mydosh, Spin Glasses: an Experimental Introduction, Taylor and Francis, London, 1993.
  • T. Jönsson, P. Nordblad, and P. Svedlindh, Dynamic study of dipole-dipole interaction effects in a magnetic nanoparticle system, Phys. Rev. B 57 (1998), pp. 497–504; M.F. Hansen, P. Jönsson, P. Nordblad, and P. Svedlindh, Critical dynamics of an interacting magnetic nanoparticle system, J. Phys.: Condens. Matter 14 (2002), 19 pp. doi:10.1088/0953-8984/14/19/314
  • M. Sasaki, P.E. J¨onsson, H. Takayama, and P. Nordblad, Comment on “Memory Effects in an Interacting Magnetic Nanoparticle System”, Phys. Rev. Lett. 93 (2004), pp. 139701; M. Sasaki, P.E. Jönsson, H. Takayama, and H. Mamiya, Aging and memory effects in superparamagnets and superspin glasses, Phys. Rev. B 71 (2005), 10 pp. doi:10.1103/PhysRevB.71.104405
  • V. Zakhvalinskii, Thesis for the degree of Doctor of Philosophy, Lappeenranta University of Technology, Lappeenranta, Finland, 2010.
  • B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin, 1984.10.1007/978-3-662-02403-4
  • N.F. Mott, E.A. Davies, Electron Processes in Non-crystalline Materials, Clarendon, Oxford, 1979, pp. 124.
  • V. Agarwal, G. Sharma, P.K. Siwach, K.K. Maurya, and H.K. Singh, 2014. arXiv:1412.0418v1.
  • D. Mukherjee, N. Bingham, M. Hordagoda, M.-H. Phan, H. Srikanth, S. Witanachchi, and P. Mukherjee, Influence of microstructure and interfacial strain on the magnetic properties of epitaxial Mn3O4/La0.7Sr0.3MnO3 layered-composite thin films, J. Appl. Phys. 112 (2012), 8 pp. doi:10.1063/1.475923710.1063/1.4759237
  • K. Kubo and N. Ohata, A quantum theory of double exchange. I, J. Phys. Soc. Jpn. 33 (1972), pp. 21–32.10.1143/JPSJ.33.21
  • K. Das, B. Satpati, and I. Das, The effect of artificial grain boundaries on magneto-transport properties of charge ordered-ferromagnetic nanocomposites, RSC Adv. 5 (2015), pp. 27338–27346.10.1039/C5RA00373C
  • I.P. Muthuselvam and R.N. Bhowmik, Grain size dependent magnetization, electrical resistivity and magnetoresistance in mechanically milled La0.67Sr0.33 MnO3, J. Alloys Compd. 511 (2012), pp. 22–30.10.1016/j.jallcom.2011.09.046
  • P.T Das, A. Taraphder, and T.K. Nath, Low temperature resistivity anomalies in Pr-based nano-manganites, J. Adv. Phys. 11 (2015), pp. 3184–3189.
  • P.M. Chowdhury, B. Ghosh, A.K. Raychaudhuri, S.D. Kaushik, and V. Siruguri, Stability of charge and orbital order in half-doped Y0.5Ca0.5MnO3 nanocrystallites, J. Nanopart. Res. 15 (2013), 11 pp. doi:10.1007/s11051-013-1585-610.1007/s11051-013-1585-6
  • R. Laiho, K.G. Lisunov, E. Lähderanta, J. Salminen, M.A. Shakhov, V.N. Stamov, P. Petrenko, and V.S. Zakhvalinskii, Non-universal low-field magnetic scaling and variable-range hopping conductivity as a consequence of disorder in La1−xCaxMn1−yFeyO3, J. Phys. Chem. Solids 64 (2003), pp. 1573–1577.
  • P.T Das, A. Das, and T.K. Nath. ( unpublished).
  • H.K. Singh, N. Khare, P.K. Siwach, and O.N. Srivastava, Low-field magneto-resistance of spray pyrolysis deposited La0.67Ca0.33MnO3 thin films, J. Phys. D: Appl. Phys. 33 (2000), pp. 921–925; 10.1088/0022-3727/33/8/307 P.K. Siwach, H.K. Singh, D.P. Singh, N. Khare, and O.N. Srivastava, Effect of substrate on magneto-transport properties of polycrystalline manganite films, J Phys D: Appl. Phys. 36 (2003), pp. 1361–1365; P.K. Siwach, H.K. Singh, and O.N. Srivastava, Low field magnetotransport in manganites, J. Phys.: Condens. Matter 20 (2008), 43 pp. doi:10.1088/0953-8984/20/27/273201
  • K. Steenbeck, T. Eick, K. Kirsch, K. O’Donnell, and E. Steinbeiß, Influence of a 36.8° grain boundary on the magnetoresistance of La0.8Sr0.2MnO3−δ single crystal films, Appl. Phys. Lett. 71 (1997), pp. 968–970; 10.1063/1.119702 K. Steenbeck, T. Eick, K. Kirsch, H.G. Schmidt, and E. Steinbeiß, Tunneling-like magnetoresistance in bicrystal La0. 8Sr0. 2MnO3-Δ thin films, Appl. Phys. Lett. 73 (1998), pp. 2506–2508.
  • W. Westerburg, F. Martin, S. Friedrich, M. Maier, and G. Jakob, Current dependence of grain boundary magnetoresistance in La0.67Ca0.33MnO3 films, J. Appl. Phys. 86 (1999), pp. 2173–2177.10.1063/1.371026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.