281
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Geometric modelling of viscosity of copper-containing liquid alloys

&
Pages 459-472 | Received 07 Sep 2015, Accepted 10 Dec 2015, Published online: 24 Feb 2016

References

  • H. Kobatake, J. Schmitz, and J. Brillo, Density and viscosity of ternary Al–Cu–Si liquid alloys, J. Mater. Sci. 49 (2014), pp. 3541–3549.
  • M.J. Brillo, I. Egry, and B. Hallstedt, Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description, J. Mater. Sci. 47 (2012), pp. 8145–8152.
  • M. Adachi, M. Schick, J. Brillo, I. Egry, and M. Watanabe, Surface tension and density measurement of liquid Si–Cu binary alloys, J. Mater. Sci. 45 (2010), pp. 2002–2008.
  • J. Brillo, I. Egry, and J. Westphal, Density and thermal expansion of liquid binary Al–Ag and Al–Cu alloys, Int. J.Mater. Res. 99 (2008), pp. 162–167.
  • J. Schmitz, B. Hallstedt, J. Brillo, I. Egry, and M. Schick, Density and thermal expansion of liquid Al–Si alloys, J. Mater. Sci. 47 (2012), pp. 3706–3712.
  • M. Kehr, M. Schick, W. Hoyer, and I. Egry, Viscosity of the binary system Al–Ni, High Temp. High Press 37 (2008), pp. 361–369.
  • W.-K. Rhim, K. Ohsaka, P.-F. Paradis, and R.E. Spjut, Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation, Rev. Sci. Instrum. 70 (1999), pp. 2796–2801.
  • G. Kaptay, Proceedings of Micro CAD 2003, International Conference, Section, Metallurgy, University of Miskolc, Hungary, 2003, pp. 23.
  • F. Zhang, Y. Du, S. Liu, and W. Jie, Modeling of the viscosity in the AL–Cu–Mg–Si system, Calphad 49 (2015), pp. 79–86.
  • G. Klancnik and J. Medved, Thermodynamic investigation of the Al-Sb-Zn system, Mater. Tehnol. 45 (2011), pp. 317–323.
  • N. Milcheva, J. Romanowska, and G. Vassilev, Sn-Ni-Bi liquid phase thermodynamic properties, Cent. Eur. J. Chem. 9 (2011), pp. 149–156.
  • I. Katayama, D. Živković, R. Novaković, and H. Yamashita, Experimental study on gallium activity in the liquid Ga-Bi-Sn alloys using the EMF method with zirconia solid electrolyte, Int. J. Mater. Res. 99 (2008), pp. 1330–1335.
  • S. Knott, Z. Li, and A. Mikula, Integral enthalpy of mixing of the liquid ternary Au–Cu–Sn system, Thermochim. Acta 470 (2008), pp. 12–17.
  • H. Arslan, A. Dogan, and T. Dogan, Estimation of excess energies and activity coefficients for the penternary Ni–Cr–Co–Al–Mo system and its subsystems, Phys. Met. Metall. 116 (2015), pp. 544–551.
  • A. Dogan and H. Arslan, Comparative thermodynamic prediction of integral properties of six component, quaternary, and ternary systems, Metall. Mater. Trans. A 46 (2015), pp. 3753–3760.
  • H. Arslan, Determinations of enthalpy and partial molar enthalpy in the alloys Bi-Cd-Ga-In-Zn, Bi-Cd-Ga-Zn and Au-Cu-Sn, Mater. Chem. Phys. 153 (2015), pp. 384–389.
  • H. Arslan and A. Dogan, An analytical investigation for thermodynamic properties of the Fe–Cr–Ni–Mg–O system, Russ. J. Phys. Chem. A 89 (2015), pp. 180–189.
  • H. Arslan, A. Dogan, and T. Dogan, An analytical approach for thermodynamic properties of the six components systems Ni–Cr–Co–Al–Mo–Ti and its subsystems, Phys. Met. Metall. 114 (2013), pp. 1053–1060.
  • H. Arslan, Analytical determination of partial and integral properties of the six components systems Ni-Cr-Co-Al-Mo-Ti and their subsystems, Physica B 438 (2014), pp. 48–52.
  • K.C. Chou, General solution model for predicting ternary thermodynamic properties, Calphad 19 (1995), pp. 315–325.
  • K.C. Chou and S.K. Wei, A new generation solution model for predicting thermodynamical properties of a multicomponent system from binaries, Metall. Mater. Trans. 28 (1997), pp. 439–445.
  • X.M. Zhong, Y.H. Liu, K.C. Chou, X.G. Lu, D. Zivkovic, and Z. Zivkovic, Estimating ternary viscosity using the thermodynamic geometric model, J. Phase Equilib. 24 (2003), pp. 7–11.
  • D. Živković, Ž. Živković, L. Yonghua, and K.C. Chou, Calorimetric investigations of the system, Pb.Bi.Mg.Sb with Oelsen’s method, J. Therm. Anal. Calorim. 66 (2001), pp. 785–793.
  • G.H. Zhang, L.J. Wang, and K.C. Chou, A comparison of different geometrical models in calculating physicochemical properties of quaternary systems, Calphad 34 (2010), pp. 504–509.
  • I. Budai, M.Z. Benkő, and G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Mater. Sci. Forum 537–538 (2007), pp. 489–496.
  • D. Živković, Application of the Kaptay model in calculation of ternary liquid alloys' viscosities, Int. J. Mater. Res. 99 (2008), pp. 748–750.
  • D. Živković, A new approach to estimate the viscosity of the ternary liquid alloys using the Budai–Benkő–Kaptay equation, Metall. Mater. Trans. B 39 (2008), pp. 395–398.
  • P. Terzieff, The viscosity of liquid alloys of polyvalent metals with Cu, Ag and Au: theoretical treatments based on the enthalpy of mixing, Physica B 404 (2009), pp. 2039–2044.
  • P. Terzieff, New data to the surdat-database of modeled and experimental physical properties of lead-free solder alloys, Physica B 405 (2010), pp. 2668–1259.
  • W. Gasior, Z. Moser, and A. Debski, New data to the SURDAT-database of modeled and experimental physical properties of lead-free solder alloys, Arch. Metall. Mater. 54 (2009), pp. 1253.
  • S. Knott and P. Terzieff, Calculation of the viscosity of the liquid ternary Ag–Au–Sn system, Int. J. Mater. Res. 101 (2010), pp. 834–838.
  • R.N. Singh and F. Sommer, Viscosity of liquid alloys: generalization of Andrade’s equation, Monatsh. Chem. 143 (2012), pp. 1235–1242.
  • S. Mudry, A. Korolyshyn, V. Vus, and A. Yakymovych, Viscosity and structure of liquid Cu–In alloys, J. Mol. Liq. 179 (2013), pp. 94–97.
  • W. Gąsior, Viscosity modeling of binary alloys: comparative studies, Calphad 44 (2014), pp. 119–128.
  • A. Yakymovych, Y. Plevachuk, S. Mudry, J. Brillo, H. Kobatake, and H. Ipser, Viscosity of liquid Co–Sn alloys: thermodynamic evaluation and experiment, Phys. Chem. Liq. 52 (2014), pp. 562–570.
  • J. Cheng, J. Gröbner, N. Hort, K.U. Kainer, and R. Schmid-Fetzer, Measurement and calculation of the viscosity of metals—a review of the current status and developing trends, Meas. Sci. Technol. 25 (2014), pp. 62001.
  • W. Chen, L. Zhang, Y. Du, and B. Huang, Viscosity and diffusivity in melts: from unary to multicomponent systems, Philos. Mag. 94 (2014), pp. 1552–1577.
  • D. Ceotto, Semi-empirical equation for the estimation of viscosity of liquid metal alloys of eutectic composition, High Temp. 53 (2015), pp. 370–374.
  • G. Kaptay, Aunified equation fort he viscosity of püre liquid metals, Z. metallkd. 96 (2005), pp. 1–8.
  • E.A. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, Oxford, 1961.
  • Y.M. Muggianu, M. Gambino, and J.P. Bross, Enthalpies of formation of liquid alloys, J. Chim. Phys. 72 (1975), pp. 83–88.
  • F. Kohler, Estimation of the thermodynamic data for a ternary system from the corresponding binary systems, Monatsh. Chem. 91 (1960), pp. 738–740.
  • G.W. Toop, Predicting ternary activities using binary data, Trans. Met. Soc. AIME 233 (1965), pp. 850–855.
  • M. Hillert, Empirical methods of predicting and representing thermodynamic properties of ternary solution phases, Calphad 4 (1980), pp. 1–12.
  • M. Hirai, Estimation of viscosities of liquid alloys, Iron Steel Inst. Jpn. Int. 33 (1993), pp. 251–258.
  • L. Ya Kozlov, L. M. Romanov, N. N. Petrov, Prognozirovanije Vjaskosti Multikomponientnyh met-alicheskih razplavov, Izv. Vuzov. Chernaya Metali. 3 (1983), pp. 7–11.
  • M. Kucharski, The viscosity of multicomponent systems, Z. Metallkd. 77 (1986), pp. 393–396.
  • S. Seetharaman and D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing, Metall. Mater. Trans. B 25 (1994), pp. 589–595.
  • M. Schick, J. Brillo, I. Egry, and B. Hallstedt, Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description, J. Mater. Sci. 47 (2012), pp. 8145–8152.
  • Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld, Density, viscosity, and electrical conductivity of hypoeutectic al-cu liquid alloys, Metall. Mater. Trans. A 39 (2008), pp. 3040–3045.
  • D. Živković and D. Manasijević, An optimal method to calculate the viscosity of simple liquid ternary alloys from the measured binary data, Calphad 29 (2005), pp. 312–316.
  • E. Gebhardt and G. Worwag, Die innere reibung flussiger legierungen aus silber-kupfer-gold, Z. Metallkd. 43 (1952), pp. 106–108.
  • M.J. Assael, A.I. Armyra, J. Brillo, S.V. Stankus, J. Wu, and W.A. Wakeham, Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc, J. Phys. Chem. Ref. Data 41 (2012), pp. 033101–033109.
  • D. Zivkovic, G. Kaptay, 35th IOC on Mining and Metalugy, Hotel Jezero, Bor Lake, Serbia & Montenegro, 30 Sept–30 Oct 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.