277
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

, &
Pages 511-523 | Received 12 Jun 2015, Accepted 04 Jan 2016, Published online: 08 Feb 2016

References

  • H.K. Onnes, “The resistance of pure mercury at helium temperatures”, Comm. Phys. Lab. Univ. Leiden 12 (1911), p.120.
  • I.R. Shein, and A.L. Ivanovski, “Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2”, Phys. Lett. A 375 (2011), p.1028.10.1016/j.physleta.2010.12.070
  • S. Ganesanpotti, T. Yajima, T. Tohyama, Z. Li, K. Nakano, Y. Nozaki, C. Tassel, Y. Kobayashi, and H. Kageyama, “LaPd2Sb2: a Pnictide Superconductor with CaBe2Ge2 type Structure”, J. Alloys Compd. 583 (2014), p.151.10.1016/j.jallcom.2013.08.005
  • Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K”, J. Am. Chem. Soc. 130 (2008), 3296–3297. 10.1021/ja800073m
  • M. Rotter, M. Tegar, and D. Johrendt, “Superconductivity at 38 K in the Iron Arsenide (Ba1−xKx)Fe2As2”, Phys. Rev. Lett. 101 (2008), p.107006.10.1103/PhysRevLett.101.107006
  • T. Mine, H. Yanagi, T. Kamiya, Y. Kamihara, M. Hirano, and H. Hosono, “Nickel-based phosphide superconductor with infinite-layer structure, BaNi2P2”, Solid State Commun. 147 (2008), 3, 111–113. 10.1016/j.ssc.2008.05.010
  • E.D. Bauer, F. Ronning, B.L. Scott, and J.D. Thompson, “Superconductivity in SrNi2As2 single crystals”, Phys. Rev. B 78 (2008), 17, 172504.10.1103/PhysRevB.78.172504
  • D.S. Jayalakshmi, and M. Sundareswari, “Effect of Pressure on structural, electronic and bonding properties of CaTM2Pn2 (TM=Ni, Pd; Pn=P, As) compounds: A full potential computational study”, J. Alloys Compd. 561 (2013), p.268.10.1016/j.jallcom.2013.01.198
  • F. Ronning, E.D. Bauer, T. Park, N. Kurita, T. Klimczuk, R. Movshovich, A.S. Sefat, D. Mandrus, and J.D. Thompson, “Ni2X2 (X = pnictide, chalcogenide, or B) based superconductors”, Physica C 469 (2009), 396–403. 10.1016/j.physc.2009.03.031
  • A. Bouhemadou, R. Khenata, S. Bin-Omran, G. Murtaza, and Y. Al-Douri, “Structural, elastic, electronic and optical properties of new layered semiconductor BaGa2P2”, Opt. Mater. 46 (2015), 122–130. 10.1016/j.optmat.2015.03.059
  • N. Kurita, F. Ronning, C.F. Miclea, Y. Tokiwa, E.D. Bauer, A. Subedi, D.J. Singh, H. Sakai, J.D. Thompson, and R. Movshovich, “Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2”, J. Phys: Conf. Ser. 273 (2011), p.012097.10.1088/1742-6596/273/1/012097
  • A. Subedi, and D.J. Singh, “Density functional study of BaNi2As2: Electronic structure, phonons, and electron-phonon superconductivity”, Phys. Rev. B 78 (2008), p.132511.10.1103/PhysRevB.78.132511
  • D.S. Jayalakshmi, and M. Sundareswari, “A Comparative Density Functional Study of Newly Proposed '122' compounds with their Parent Low-Temperature Superconductors”, Indian J. Phys. 89 (2015), 201–208. 10.1007/s12648-014-0541-3
  • M. Sundareswari, and R. Swaminathan, “Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds — First principles DFT study”, Solid State Commun. 150 (2010), 2057–2060. 10.1016/j.ssc.2010.08.004
  • K. Schwarz, P. Blaha, and S.B. Trickey, “Electronic structure of solids with WIEN2k”, Mol. Phys. 108 (2010), p.3147.10.1080/00268976.2010.506451
  • H. Louhab, A. Yakoubi, H. Khachai, and O.M Abid, R. Khenata, R. Ahmed, G. Murtaza and S. Bin Omran, “First-principles study of structural, electronic, elastic and thermal properties of intermetallic ternary compounds (RMn2Si2: R=Ce and Nd)”, Mater. Sci. Semicond. Process. 38 (2015), p.31.10.1016/j.mssp.2015.04.004
  • J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 77 (1966), p.3865.
  • V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory”, J. Phys: Condens. Matter 9 (1997), p.7359.10.1088/0953-8984/9/4/002
  • J. Kaczkowski, and A. Jezierski, “DFT+U Calculations of Transition Metal Doped AlN”, Acta Phys. Pol., A 116 (2009), p.924.
  • F. Birch, “Finite Elastic Strain of Cubic Crystals”, Phys. Rev. 71 (1947), p.809.10.1103/PhysRev.71.809
  • F. Ronning, N. Kurita, E.D. Bauer, B.L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J.D. Thompson, “Synthesis and properties of CaFe2As2 single crystals”, J. Phys: Condens. Matter 20 (2008), p.322201.10.1088/0953-8984/20/32/322201
  • H.L. Shi, H.X. Yang, H.F. Tian, J.B. Lu, Z.W. Wang, Y.B. Qin, Y.J. Song, and J.Q. Li, “Structural properties and superconductivity of SrFe2As2 − xPx (0.0 ≤ x ≤ 1.0) and CaFe2As2 − yPy (0.0 ≤ y ≤ 0.3)”, J. Phys.: Condens. Matter 22 (2010), 12, p.125702.
  • D.S. Jayalakshmi, and M. Sundareswari, “A First Principle Investigation on the Structural, Electronic and Magnetic Properties of CaNi2Pn2 (Pn=P, Sb, Bi)”, Proc. Indian Nat. Sci. Acad. 79 (2013), p.333.
  • N. Berry, C. Capan, G. Seyfarth, A.D. Bianchi, J. Ziller, and Z. Fisk, “Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2”, Phys. Rev. B 79 (2009), p.180502.10.1103/PhysRevB.79.180502
  • F. Ma, Z.-Y. Lu, and T. Xiang, “Electronic structures of ternary iron arsenides AFe2As2 (A=Ba, Ca, or Sr)”, Front. Phys. Chin. 5 (2010), 2, p.150–160. 10.1007/s11467-009-0076-9
  • D. Kasinathan, A. Ormeci, K. Koch, U. Burkhardt, W. Schnelle, A. Leithe-Jasper, and H. Rosner, “AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM  = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity”, New J. Phys. 11 (2009), p.025023.10.1088/1367-2630/11/2/025023
  • B. Zhou, M. Xu, Y. Zhang, G. Xu, C. He, L.X. Yang, F. Chen, B.P. Xie, Xia Yu Cui, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, X. Dai, and D.L. Feng, “Electronic structure of BaNi2As2”, Phys. Rev. B 83 (2011), p.035110.10.1103/PhysRevB.83.035110
  • H. Mizoguchi, T. Kuroda, T. Kamiya, and H. Hosono, “LaCo2B2: a Co-based layered superconductor with a ThCr2Si2-type structure”, Phys. Rev. Lett. 106 (2011), p.237001.10.1103/PhysRevLett.106.237001
  • D.J. Singh, “Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations”, Phys. Rev. B 78 (2008), p.094511.10.1103/PhysRevB.78.094511
  • S.J. Moon, Y.S. Lee, A.A. Schafgans, A.V. Chubukov, S. Kasahara, T. Shibauchi, T. Terashima, Y. Matsuda, M.A. Tanatar, R. Prozorov, A. Thaler, P.C. Canfield, S. L. Bud’ko, S. Sefat, D. Mandrus, K. Segawa, Y. Ando, and D.N. Basov, “Infrared pseudogap in cuprate and pnictide high-temperature superconductors”, Phys. Rev. B 90 (2014).014503.
  • S.J. Moon, A.A. Schafgans, S. Kasahara, T. Shibauchi, T. Terashima, Y. Matsuda, and M.A. Tanatar, “Infrared Measurement of the Pseudogap of P-Doped and Co-Doped High-Temperature BaFe2As2 Superconductors”, Phys. Rev. Lett. 109 (2012), p.027006.10.1103/PhysRevLett.109.027006
  • K. Gofryk, B. Saparov, T. Durakiewicz, A. Chikina, S. Danzenbächer, D.V. Vyalikh, M.J. Graf, and A.S. Sefat, “Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2”, Phys. Rev. Lett. 112 (2014), p.186401.10.1103/PhysRevLett.112.186401
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, “Trends in structural, electronic properties and Fermi surface topology of 15 tetragonal ThCr2Si2-type phases AFe2Ch2, where A = Li, Na, K, Rb, and Cs; Ch = S, Se, and Te, as parent systems of new ternary iron–chalcogenide superconductors”, Comput. Mater. Sci. 60 (2012), p.1.10.1016/j.commatsci.2012.03.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.