1,533
Views
35
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Generalized stacking fault energy of γ-Fe

, , , , , , & show all
Pages 524-541 | Received 16 Jun 2015, Accepted 05 Jan 2016, Published online: 12 Feb 2016

References

  • B.C. De Cooman, K. Chin, and J. Kim, High Mn TWIP steels for automotive applications, new trends and developments in Automotive System Engineering, Prof. M. Chiaberge, ed., ISBN: 978-953-307-517-4, InTech, 2011, pp. 101–128. Doi: 10.5772/14086. Available at: http://www.intechopen.com/books/new-trends-and-developments-in-automotive-system-engineering/high-mn-twip-steels-for-automotive-applications.
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nat. Mater. 1 (2002), pp. 45–49.
  • M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science 300 (2003), p. 1275.
  • V. Yamakov, D. Wolf, S.R. Phillpot, a.K. Mukherjee, and H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 3 (2004), pp. 43–47.
  • W. Li, S. Lu, Q.M. Hu, S.K. Kwon, B. Johansson, and L. Vitos, Generalized stacking fault energies of alloys, J. Phys.: Condens. Matter 26 (2014), p. 265005 (12p).
  • S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Generalized planar fault energies and twinning in Cu-Al alloys, Appl. Phys. Lett. 89 (2006), p. 191911 (3p).
  • S. Kibey, J. Liu, M. Curtis, D. Johnson, and H. Sehitoglu, Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels, Acta Mater. 54 (2006), pp. 2991–3001.
  • S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Energy pathways and directionality in deformation twinning, Appl. Phys. Lett. 91 (2007), pp. 2007–2009.
  • S. Kibey, J. Liu, D. Johnson, and H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation, Acta Mater. 55 (2007), pp. 6843–6851.
  • M. Jo, Y.M. Koo, B.J. Lee, B. Johansson, L. Vitos, and S.K. Kwon, Theory for plasticity of face-centered cubic metals, Proc. Natl. Acad. Sci. 111 (2014), pp. 6560–6565.
  • H. Gholizadeh, C. Draxl, and P. Puschnig, The influence of interstitial carbon on the γ-surface in austenite, Acta Mater. 61 (2013), pp. 341–349.
  • N. Medvedeva, M. Park, D.V. Aken, and J. Medvedeva, First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe, J. Alloys Compd. 582 (2014), pp. 475–482.
  • O. Gven, F. Roters, T. Hickel, and M. Bambach, ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance, JOM 67 (2015), pp. 120–128.
  • L. Vitos, P.A. Korzhavyi, and B. Johansson, Evidence of Large Magnetostructural Effects in Austenitic Stainless Steels, Phys. Rev. Lett. 96 (2006), pp. 117210 (4p).
  • S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, a.D. Patel, and Z.K. Liu, Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation, J. Phys.: Condens. Matter. 24 (2012), p. 155402 (10p).
  • G. Grimvall, Spin disorder in paramagnetic fcc iron, Phys. Rev. B 39 (1989), pp. 12300–12301.
  • A.V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Temperature-induced longitudinal spin fluctuations in Fe and Ni, Phys. Rev. B 75 (2007), p. 054402 (7p).
  • H. Gholizadeh, The influence of alloying and tempearature on the stacking-fault energy of iron-based alloys, Ph.D. diss., Montanuniversitt Leoben, 2013.
  • B. Gyorffy, A. Pindor, J. Staunton, G. Stocks, and H. Winter, A first-principles theory of ferromagnetic phase transitions in metals, J. Phys. F: Metal Phys. 15 (1985), pp. 1337–1386.
  • D. Johnson, F. Pinski, and G. Stocks, Effects of chemical and magnetic disorder in Fe0.50Mn0.50, J. Appl. Phys. 63 (1988), pp. 3490–3492.
  • L. Vitos, Computational Quantum Mechanics for Materials Engineers, Springer-Verlag, London, 2007.
  • L. Vitos, P.A. Korzhavyi, J.O. Nilsson, and B. Johansson, Stacking fault energy and magnetism in austenitic stainless steels, Phys. Scr. 77 (2008), p. 065703 (3p).
  • H. Zhang, B. Johansson, and L. Vitos, Density-functional study of paramagnetic iron, Phys. Rev. B 84 (2011), p. 140411 (5p).
  • L. Vitos, J.O. Nilsson, and B. Johansson, Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory, Acta Mater. 54 (2006), pp. 3821–3826.
  • L. Vitos and B. Johansson, Large magnetoelastic effects in paramagnetic stainless steels from first principles, Phys. Rev. B 79 (2009), p. 024415 (5p).
  • A. Reyes-Huamantinco, P. Puschnig, C. Ambrosch-Draxl, O.E. Peil, and A.V. Ruban, Stacking-fault energy and anti-Invar effect in Fe-Mn alloy from first principles, Phys. Rev. B 86 (2012), p. 060201 (5p).
  • S. Lu, Q.M. Hu, B. Johansson, and L. Vitos, Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels, Acta Mater. 59 (2011), p. 5728–5734.
  • P.J.H. Denteneer, W. van Haeringen, and W. van Haeringen, Stacking-fault energies in semiconductors from first-principles calculations, J. Phys. C: Solid State Phys. 20 (1987), pp. L883–L887.
  • A.P. Jephcoat, H.K. Mao, and P.M.Bell, Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media, J. Geophys. l Res.: Solid Earth. 91 (1986), p. 4677–4684.
  • G. Steinle-Neumann, L. Stixrude, and R.E. Cohen, First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B 60 (1999), pp. 791–799.
  • R.M. Dreizler and E.K.U. Gross, Density Functional Theory, Springer, Berlin, 1998, 304p.
  • H. Levämäki, M.P.J. Punkkinen, K. Kokko, and L. Vitos, Quasi-non-uniform gradient-level exchange-correlation approximation for metals and alloys, Phys. Rev. B 86 (2012), p. 201104 (5p).
  • H. Levämäki, M.P.J. Punkkinen, K. Kokko, and L. Vitos, Flexibility of the quasi-non-uniform exchange-correlation approximation, Phys. Rev. B 89 (2014), p. 115107 (8p).
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996), p. 1396.
  • J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992), pp. 13244–13249.
  • M. Asato, A. Settels, T. Hoshino, T. Asada, S. Blügel, R. Zeller, and P.H. Dederichs, Full-potential KKR calculations for metals and semiconductors, Phys. Rev. B 60 (1999), pp. 5202–5210.
  • O.K. Andersen, O. Jepsen, and G. Krier, Exact Muffin-Tin Orbital Theory, World Scientific, Singapore, 1994, p. 63–124.
  • O.K. Andersen, C. Arcangeli, R.W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, Third-Generation TB-LMTO, Mat. Res. Soc. Symp. Proc. 491 (1998), p. 3 (32p).
  • L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Phys. Rev. B 64 (2001), p. 014107 (11p).
  • L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár, Application of the exact muffin-tin orbitals theory: the spherical cell approximation, Comput. Mater. Sci. 18 (2000), pp. 24–38.
  • J. Kollár, L. Vitos, and H.L. Skriver, From ASA Towards the Full Potential, Lectures Notes in Physics, Springer-Verlag, Berlin, 2000, p. 85–114.
  • P. Soven, Coherent-Potential Model of Substitutional Disordered Alloys, Phys. Rev. 156 (1967), pp. 809–813.
  • L. Vitos, I.A. Abrikosov, and B. Johansson, Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory, Phys. Rev. Lett. 87 (2001), p. 156401 (4p).
  • F.J. Pinski, J. Staunton, B.L. Gyorffy, D.D. Johnson, and G.M. Stocks, Ferromagnetism versus Antiferromagnetism in Face-Centered-Cubic Iron, Phys. Rev. Lett. 56 (1986), pp. 2096–2099.
  • H.L. Skriver, Crystal structure from one-electron theory, Phys. Rev. B 31 (1985), pp. 1909–1923.
  • Z.S. Basinski, W. Hume-Rothery, and a.L. Sutton, The Lattice Expansion of Iron, Proc. R. Soc. A: Math., Phys. Eng. Sci. 229 (1955), pp. 459–467.
  • A. Dick, T. Hickel, and J. Neugebauer, The Effect of Disorder on the Concentration-Dependence of Stacking Fault Energies in Fe 1-x Mn x - a First Principles Study, Steel Res. Int. 80 (2009), pp. 603–608.
  • A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, First-principles investigation of the effect of carbon on the stacking fault energy of Fe-C alloys, Acta Mater. 59 (2011), pp. 3041–3048.
  • J. Wortman and R. Evans, Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium, J. Appl. phys. 36 (1965), pp. 153–156.
  • Z. Jin, S. Dunham, H. Gleiter, H. Hahn, and P. Gumbsch, A universal scaling of planar fault energy barriers in face-centered cubic metals, Scr. Mater. 64 (2011), pp. 605–608.
  • R. Schramm and R. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. A 6 (1975), pp. 1345–1351.
  • C.G. Rhodes and A.W. Thompson, The composition dependence of stacking fault energy in austenitic stainless steels, Metall. Trans. A 8 (1977), pp. 1901–1906.
  • H. O’Neill, Twinning in Alpha Iron, Nature 135 (1935), pp. 916–917.
  • L. Zhang and D.C. Guo, A general etchant for revealing prior-austenite grain boundaries in steels, Mater. Charact. 30 (1993), pp. 299–302.
  • T. Sourmail, P. Opdenacker, G. Hopkin, and H. Bhadeshia. Available at : http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.
  • Y. Jin, M. Bernacki, G. Rohrer, A.D. Rollett, B. Lin, and N. Bozzolo, Formation of Annealing Twins during Recrystallization and Grain Growth in 304L Austenitic Stainless Steel, Mater. Sci. Forum 753 (2013), pp. 113–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.