182
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials science

A non-viscous-featured fractograph in metallic glasses

, &
Pages 542-550 | Received 09 Nov 2015, Accepted 11 Jan 2016, Published online: 04 Mar 2016

References

  • C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55 (2007), pp. 4067–4109.10.1016/j.actamat.2007.01.052
  • A.L. Greer, Y.Q. Cheng, and E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng. R 74 (2013), pp. 71–132.10.1016/j.mser.2013.04.001
  • M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie, A damage-tolerant glass, Nat. Mater. 10 (2011), pp. 123–128.10.1038/nmat2930
  • K.F. Yao, F. Ruan, Y.Q. Yang, and N. Chen, Superductile bulk metallic glass, Appl. Phys. Lett. 88 (2006), p. 122106.10.1063/1.2187516
  • K.F. Yao and C.Q. Zhang, Fe-based bulk metallic glass with high plasticity, Appl. Phys. Lett. 90 (2007), p. 061901.10.1063/1.2437722
  • Y. Chen, M.Q. Jiang, Y.J. Wei, and L.H. Dai, Failure criterion for metallic glasses, Philos. Mag. 91 (2011), pp. 4536–4554.10.1080/14786435.2011.613859
  • A.V. Sergueeva, N.A. Mara, J.D. Kuntz, E.J. Lavernia, and A.K. Mukherjee, Shear band formation and ductility in bulk metallic glass, Philos. Mag. 85 (2005), pp. 2671–2687.10.1080/14786430500154059
  • Y. Yang and C.T. Liu, Size effect on stability of shear-band propagation in bulk metallic glasses: an overview, J. Mater. Sci. 47 (2012), pp. 55–67.10.1007/s10853-011-5915-8
  • Y. Shao, K.F. Yao, M. Li, and X. Liu, Two-zone heterogeneous structure within shear bands of a bulk metallic glass, Appl. Phys. Lett. 103 (2013), p. 171901.10.1063/1.4826117
  • Y. Shao, G.N. Yang, K.F. Yao, and X. Liu, Direct experimental evidence of nano-voids formation and coalescence within shear bands, Appl. Phys. Lett. 105 (2014), p. 181909.10.1063/1.4901281
  • P. Lowhaphandu, L.A. Ludrosky, S.L. Montgomery, and J.J. Lewandowski, Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy, Intermetallics 8 (2000), pp. 487–492.10.1016/S0966-9795(99)00137-5
  • X.J. Gu, S.J. Poon, G.J. Shiflet, and J.J. Lewandowski, Ductile-to-brittle transition in a Ti-based bulk metallic glass, Scr. Mater. 60 (2009), pp. 1027–1030.10.1016/j.scriptamat.2009.02.037
  • H.Y. Ding, Y. Li, and K.F. Yao, Preparation of a Pd-Cu-Si Bulk Metallic Glass with a Diameter up to 11 mm, Chin. Phys. Lett. 27 (2010), p. 126101.10.1088/0256-307X/27/12/126101
  • K.F. Yao, Y.Q. Yang, and N. Chen, Mechanical properties of Pd-Cu-Si bulk metallic glass, Intermetallics 15 (2007), pp. 639–643.10.1016/j.intermet.2007.03.005
  • Q. He, J.K. Shang, E. Ma, and J. Xu, Crack-resistance curve of a Zr–Ti–Cu–Al bulk metallic glass with extraordinary fracture toughness, Acta Mater. 60 (2012), pp. 4940–4949.10.1016/j.actamat.2012.05.028
  • T.L. Anderson, Fracture Mechanics : Fundamentals and Applications Vol. 92, CRC Press, New York, NY, 2004.
  • ASTM E1820, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2008.
  • Y.M. Wang, C. Zhang, Y. Liu, K.C. Chan, and L. Liu, Why does pitting preferentially occur on shear bands in bulk metallic glasses? Intermetallics 42 (2013), pp. 107–111.10.1016/j.intermet.2013.05.006
  • F.F. Wu, Z.F. Zhang, S.X. Mao, and J. Eckert, Effect of sample size on ductility of metallic glass, Philos. Mag. Lett. 89 (2009), pp. 178–184.10.1080/09500830902720917
  • O.V. Kuzmin, Y.T. Pei, C.Q. Chen, and J.T.M. De Hosson, Intrinsic and extrinsic size effects in the deformation of metallic glass nanopillars, Acta Mater. 60 (2012), pp. 889–898.10.1016/j.actamat.2011.11.023
  • G. Kumar, A. Desai, and J. Schroers, Bulk metallic glass: the smaller the better, Adv. Mater. 23 (2011), pp. 461–476.10.1002/adma.v23.4
  • J.W. Qiao, H.L. Jia, Y. Zhang, P.K. Liaw, and L.F. Li, Multi-step shear banding for bulk metallic glasses at ambient and cryogenic temperatures, Mater. Chem. Phys. 136 (2012), pp. 75–79.10.1016/j.matchemphys.2012.06.033
  • P. Tandaiya, R. Narasimhan, and U. Ramamurty, On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass, Acta Mater. 61 (2013), pp. 1558–1570.10.1016/j.actamat.2012.11.033
  • P. Tandaiya, U. Ramamurty, and R. Narasimhan, Mixed mode (I and II) crack tip fields in bulk metallic glasses, J. Mech. Phys. Solids 57 (2009), pp. 1880–1897.10.1016/j.jmps.2009.07.006
  • R.L. Narayan, P. Tandaiya, G.R. Garrett, M.D. Demetriou, and U. Ramamurty, On the variability in fracture toughness of 'ductile' bulk metallic glasses, Scr. Mater. 102 (2015), pp. 75–78.10.1016/j.scriptamat.2015.02.017
  • A.S. Argon and M. Salama, Mechanism of fracture in glassy materials capable of some inelastic deformation, Mater. Sci. Eng. 23 (1976), pp. 219–230.10.1016/0025-5416(76)90198-1
  • P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, Proc. R. Soc. London, Ser. A 245 (1958), pp. 312–329.10.1098/rspa.1958.0085
  • D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Demetriou and W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature 451 (2008), pp. 1083–1085.10.1038/nature06598
  • J.W. Qiao, Y. Zhang, H.L. Jia, H.J. Yang, P.K. Liaw, and B.S. Xu, Tensile softening of metallic-glass-matrix composites in the supercooled liquid region, Appl. Phys. Lett. 100 (2012), p. 121902.10.1063/1.3696026
  • S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert, Transformation-mediated ductility in CuZr-based bulk metallic glasses, Nat. Mater. 9 (2010), pp. 473–477.10.1038/nmat2767
  • J. Saida, A.D.H. Setyawan, H. Kato, and A. Inoue, Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass, Appl. Phys. Lett. 87 (2005), p. 151907.10.1063/1.2081124
  • X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, and P.K. Liaw, Two-glassy-phase bulk metallic glass with remarkable plasticity, Appl. Phys. Lett. 91 (2007), p. 131901.10.1063/1.2790380
  • W. Chen, K.C. Chan, S.H. Chen, S.F. Guo, W.H. Li. and G. Wang, Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating, Mater. Sci. Eng., A 552 (2012), pp. 199–203.10.1016/j.msea.2012.05.031
  • K. Mondal and K. Hono, Geometry Constrained Plasticity of Bulk Metallic Glass, Mater. Trans. 50 (2009), pp. 152–157.10.2320/matertrans.MRA2008342
  • Y.H. Sun, Inverse ductile-brittle transition in metallic glasses?, Mater. Sci. Technol. 31 (2015), pp. 635–650.10.1179/1743284714Y.0000000684
  • S.B. Qiu and K.F. Yao, Novel application of the electrodeposition on bulk metallic glasses, Appl. Surf. Sci. 255 (2008), pp. 3454–3458.10.1016/j.apsusc.2008.07.077
  • J.F. Li, X. Wang, G.N. Yang, N. Chen, X. Liu, and K.F. Yao, Enhanced plasticity of a Fe-based bulk amorphous alloy by thin Ni coating, Mater. Sci. Eng. A 645 (2015), pp. 318–322.10.1016/j.msea.2015.08.030
  • N. Nagendra, U. Ramamurty, T.T. Goh, and Y. Li, Effect of crystallinity on the impact toughness of a La-based bulk metallic glass, Acta Mater. 48 (2000), pp. 2603–2615.10.1016/S1359-6454(00)00052-5
  • G. Wang, D. Zhao, H. Bai, M. Pan, A. Xia, B. Han, X. Xi, Y. Wu, and W. Wang, Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses, Phys. Rev. Lett. 98 (2007), p. 235501.10.1103/PhysRevLett.98.235501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.