354
Views
29
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Anisotropic elastic properties of MB (M = Cr, Mo, W) monoborides: a first-principles investigation

&
Pages 972-990 | Received 08 Oct 2015, Accepted 26 Jan 2016, Published online: 03 Mar 2016

References

  • A.K. Sinha, Heat Treating, ASM Int, Materials Park, OH, 1991, p. 437.
  • R. Chatterjee-Fisher, Surface Modification Technologies, Marcel Dekker, New York (NY), 1989.
  • S. Ingole, H. Liang, M. Usta, C. Bindal and A.H. Ucisik, Multi-scale wear of a boride coating on tungsten: Wear 259 (2005) pp. 849–860.
  • S. Taktak, A study on the diffusion kinetics of borides on boronized Cr-based steels: J. Mater. Sci. 41 (2006) pp. 7590–7596.
  • M. Usta, I. Ozbek, C. Bindal, A.H. Ucisik, S. Ingole and H. Liang, A comparative study of borided pure niobium, tungsten and chromium:. Vacuum 80 (2006), pp. 1321–1325.
  • I. Ozbek, S. Sen, M. Ipek, C. Bindal, S. Zeytin and A.H. Hikmet, Ucisik, A mechanical aspect of borides formed on the AISI 440C stainless-steel: Vacuum 73 (2004) pp. 643–648.
  • L.G. Yu, X.J. Chen, K.A. Khor and G. Sundararajan, FeB/Fe2B phase transformation during SPS pack-boriding. boride layer growth kinetics: Acta Mater. 53 (2005) pp. 2361–2368.
  • M. Audronis, P.P.J. Kelly, R.D. Arnell and A.V. Valiulis, Pulsed magnetron sputtering of chromium boride films from loose powder targets: Surf. Coat. Technol. 200 (2006) pp. 4166–4173.
  • M. Audronis, P.P.J. Kelly, A. Leyland and A. Matthews, Microstructure of direct current and pulse magnetron sputtered Cr-B coatings: Thin Solid Films 515 (2006) pp. 1511–1516.
  • L.G. Yu, K.A. Khor and G. Sundararajan, Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology: Surf. Coat. Technol. 201 (2006) pp. 2849–2853.
  • K.A. Khor, L.G. Yu and G. Sundararajan, Formation of hard tungsten boride layer by spark plasma sintering boriding: Thin Solid Films 478 (2005) pp. 232–237.
  • [12] PP. Vajeeston, PP. Ravindran, C. Ravi and R. Asokamani1, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B. 63 (2001) pp. 045115-12.
  • N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui and S. Otani, Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2: Acta Mater. 58 (2010) pp. 76–84.
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of mono-and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations: J. Phys. Condens. Matter 20 (2008) pp. 415218.
  • W. Hayami, A. Momozawa and S. Otani, Effect of defects in the formation of AlB2-type WB2 and MoB2: Inorg. Chem. 52 (2013) pp. 7573–7577.
  • J. Wang and Y.J. Wang, Mechanical and electronic properties of 5d transition metal diborides MB2 (M= Re, W, Os, Ru): J. Appl. Phys. 105 (2009) pp. 083539–6.
  • A.L. Ivanovskii, Mechanical and electronic properties of diborides of transition 3d-5d metals from first principles. Toward search of novel ultra-incompressible and superhard materials: Prog. Mater. Sci. 57 (2012) pp. 184–228.
  • X.Y. Chong, Y.H. Jiang, R. Zhou and J. Feng, Elastic properties and electronic structures of CrxBy as superhard compounds: J. Alloys Compd. 610 (2014) pp. 684–694.
  • M. Kayhan, E. Hildebrandt, M. Frotscher, A. Senyshyn, K. Hofmann, L. Alff and B. Albert, Neutron diffraction and observation of superconductivity for tungsten borides, WB and W2B4: Solid State Sci. 14 (2012) pp. 1656–1659.
  • Y. Wang, W. Chen, X. Chen, H.Y. Liu, Z.H. Ding, Y.M. Ma and X.D. Wang, Q.PP. Cao and J.Z. Jiang, Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides. First-principles calculations: J. Alloys Compd. 538 (2012) pp. 115–124.
  • R.W.G. Wyckoff, Crystal Structures, Krieger, Malabar, 1986.
  • H.Y. Gou, Z.PP. Li, J.W. Zhang and H. Niu, F.M Gao, R.C. Ewing, J. Lian, Origin of the rigidity in tetragonal MB (M= Cr, Mo and W) and softening of defective WB. First-principles investigations. Compp: Mater. Sci. 53 (2012) pp. 460–463.
  • H.H. Chen, Y. Bi, Y. Cheng, G.F. Ji, F. Peng and Y.F. Hu, Structural and thermodynamic properties of WB at high pressure and high temperature: Physica B 407 (2012) pp. 4760–4764.
  • E.J. Zhao, J. Meng, Y.M. Ma and Z.J. Wu, Phase stability and mechanical properties of tungsten borides from first principles calculations: Phys. Chem. Chem. Phys. 12 (2010) pp. 13158–13165.
  • M.D. Segall, P.P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.P.J. Hasnip, S.J. Clark and M.C. Payne, First-principles simulation. ideas, illustrations and the CASTEP code: J. Phys. Condens. Matter. 14 (2002) pp. 2717–2744.
  • [26] J.PP. Perdew, K. Burke and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 54 (1996) pp. 16533–16539.
  • Q. Li, D. Zhou, W.T. Zheng, Y.M. Ma and C.F. Chen, Global structural optimization of tungsten borides: Phys. Rev. Lett. 110 (2013) pp. 136403–136405.
  • R. Kiessling, The binary system chromium-boron: Acta Chem. Scand. 3 (1949) pp. 595–602.
  • A.J. Frueh, Confirmation of the structure of chromium boride: CrB. Acta Crystallogr. 4 (1951) pp. 66–67.
  • R. Kiessling, The crystal structures of molybdenum and tungsten borides: Acta Chem. Scand. 1 (1947) pp. 893–916.
  • H. Itoh, T. Matsudaira, S. Naka, H. Hamamoto and M. Obayashi, Formation process of tungsten borides by solid state reaction between tungsten and amorphous boron: J. Mater. Sci. 22 (1987) pp. 2811–2815.
  • X.W. Xu, K. Fu, L.L. Li, Z.M. Lu, X.H. Zhang, Y. Fan, J. Lin, G.D. Liu, H.Z. Luo and C.C. Tang, Dependence of the elastic properties of the early-transition-metal monoborides on their electronic structures. A density functional theory study: Physica B 419 (2013) pp. 105–111.
  • Y.C. Liang, Z. Zhong and W.Q. Zhang, A thermodynamic criterion for designing superhard transition-metal borides with ultimate boron content: Comput. Mater. Sci. 68 (2013) pp. 222–228.
  • C.J. Qi, J. Feng, R.F. Zhou, Y.H. Jiang and R. Zhou, First Principles Study on the Stability and Mechanical Properties of MB (M= V, Nb and Ta) Compounds: Chin. Phys. Lett. 30 (2013) pp. 117101–117105.
  • S. Stadler, R.PP. Winarski, J.M. MacLaren, D.L. Ederer, J. vanEk, A. Moewes, M.M. Grush, T.A. Callcott, R.C.C. Perera, Electronic structures of the tungsten borides WB, W2B and W2B5: J. Electron. Spectrosc. Relat. Phenom. 110–111 (2000) pp. 75–86.
  • N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui and S. Otani, Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2: Acta Mater. 58 (2010) pp. 76–84.
  • [37] Z.JWu, E.JZhao, H.PP.Xiang, X.F.Hao, X.J.Liu,J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B. 76 (2007), pp. 054115.
  • [38] X.PP. Gao, Y.H. Jiang, R. Zhou and J. Feng, Stability and elastic properties of Y-C binary compounds investigated by first principles calculations. J. Alloys Compd. 587 (2014), pp. 819-826.
  • H. Ozisik, E. Deligoz, K. Colakoglu and G. Surucu, Structural and mechanical stability of rare-earth diborides: Chin. Phys. B. 22 (2013) pp. 046202–8.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A. 65 (1952), pp. 349.
  • K.B. Panda and K.S. Chandran, First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory: Acta Mater. 54 (2006) pp. 1641–1657.
  • Z.C. Huang, J. Feng and W. Pan, Theoretical investigations of the physical properties of zircon-type YVO4: J. Solid State Chem. 185 (2012) pp. 42–48.
  • M. Usta, I. Ozbek, M. Ipek, C. Bindal and A.H. Ucisik, The characterization of borided pure tungsten: Surf. Coat. Technol. 194 (2005) pp. 330–334.
  • S.V. Meschel and O.J. Kleppa, Standard enthalpies of formation of NbB2, MoB, and ReB2 by high-temperature direct synthesis calorimetry: Metall. Trans. A 24 (1993) pp. 947–950.
  • S. Stadler, R.PP. Winarski, J.M. MacLaren, D.L. Ederer, J. vanEk, A. Moewes, M.M. Grush, T.A. Callcott and R.C.C. Perera, Electronic structures of the tungsten borides WB, W2B and W2B5: J. Electron. Spectrosc. Relat. Phenom. 110–111 (2000) pp. 75–86.
  • N. Korozlu, K. Colakoglu, E. Deligoz and S. Aydin, The elastic and mechanical properties of MB12 (M= Zr, Hf, Y, Lu) as a function of pressure: J. Alloys Compd. 546 (2013) pp. 157–164.
  • M. Rajagopalan and S. Praveen Kumar, FP-LAPW study of the elastic properties of Al2X (X=Sc,Y,La,Lu). Physica B 405 (2010), pp. 1817-1820.
  • M.D. Segall, R. Shah, C.J. Pickard and M.C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials: Phys. Rev. B. 54 (1996) pp. 16317–16320.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals: Philos. Mag. 45 (1954) pp. 823–843.
  • J.J. Lewandowski, W.H. Wang and A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses: Philos. Mag. Lett. 85 (2005) pp. 77–87.
  • X.Q. Chen, H.Y. Niu, D.Z. Li and Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses: Intermetallics 19 (2011) pp. 1275–1281.
  • Y.J. Li, S.C. Li, R. Lv, J.Q. Qin, J. Zhang, J.H. Wang, F.L. Wang, Z.L. Kou and D.W. He, Study of high-pressure sintering behavior of cBN composites starting with cBN-Al mixtures: J. Mater. Res. 23 (2008) pp. 2366–2372.
  • C. Chen, D. He, Z.L. Kou, F. Peng, L.D. Yao, R. Yu and Y. Bi, B6O-Based composite to rival polycrystalline cubic boron nitride: Adv. Mater. 19 (2007) pp. 4288–4291.
  • H.O. Pierson, Handbook of Chemical Vapor Deposition (CVD), Technology, and Noyes Applications, Publications, NJ, Westwood, Principles, 1992.
  • Y.K. Chou and C.J. Evans, Cubic boron nitride tool wear in interrupted hard cutting: Wear 225–229 (1999) pp. 234–245.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index: Phys. Rev. Lett. 101 (2008) pp. 055504–4.
  • H.B. Ozisik, K. Colakoglu and E. Deligoz, First-principles study of structural and mechanical properties of AgB2 and AuB2 compounds under pressure: Comput. Mater. Sci. 51 (2012) pp. 83–90.
  • P.P. Ravindran, L. Fast, P.P.A. Korzhavyi and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals. application to TiSi2: J. Appl. Phys. 84 (1998) pp. 4891–4904.
  • J. Feng, B. Xiao, R. Zhou, W. Pan and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln= La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure: Acta Mater. 60 (2012) pp. 3380–3392.
  • J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
  • L. Sun, Y.M. Gao, B. Xiao, Y.F. Li and G.L. Wang, Anisotropic elastic and thermal properties of titanium borides by first-principles calculations: J. Alloys Compd. 579 (2013) pp. 457–467.
  • K. Brugger, Determination of third-order elastic coefficients in crystals: J. Appl. Phys. 36 (1965) pp. 768–773.
  • D. Music, A. Houben, R. Dronskowski and J.M. Schneider, Ab initio study of ductility in M2AlC (M= Ti, V, Cr): Phys. Rev. B. 75 (2007) pp. 174102.
  • J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou and W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln= La, Pr, Nd, Sm, Eu and Gd) pyrochlore: Acta Mater. 59 (2011) pp. 1742–1760.
  • Y. Shen, D.R. Clarke and P.P.A. Fuierer, Anisotropic thermal conductivity of the aurivillus phase, bismuth titanate (Bi4Ti3O12). A natural nanostructured superlattice: Appl. Phys. Lett. 93 (2008) pp. 102907–3.
  • D.G. Cahill, S.K. Watson and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals: Phys. Rev. B. 46 (1992) pp. 6131–6140.
  • J. Callaway, Model for lattice thermal conductivity at low temperatures: Phys. Rev. 113 (1959) p. 1046.
  • J. Feng, B. Xiao, R. Zhou and W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE= La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations: Acta Mater. 61 (2013) pp. 7364–7383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.