259
Views
26
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electronic and optical properties of asymmetric GaAs double quantum dots in intense laser fields

&
Pages 1131-1149 | Received 30 Oct 2015, Accepted 09 Feb 2016, Published online: 14 Mar 2016

References

  • E. Rosencher, P. Bois, J. Nagle, E. Costard, and S. Delaitre, Observation of nonlinear optical rectification at 10.6 μm in compositionally asymmetrical AlGaAs multiquantum wells, Appl. Phy. Lett. 55 (1989), pp. 1597–1599.10.1063/1.102248
  • A. Bitz, M. Marsi, E. Tuncel, S. Gürtler, J.L. Staehli, B.J. Vartanian, M.J. Shaw, and A.F.G. van der Meer, Second-harmonic generation involving valence-subband transitions in p-doped GaAs/AlxGa1-xAs quantum wells, Phys. Rev. B 56 (1997), pp. 10428–10434.
  • A. D’Andrea, N. Tomassini, L. Ferrari, M. Righini, S. Selci, M.R. Bruni, D. Schiumarini, and M.G. Simeone, Second harmonic generation in stepped InAsGaAs/GaAs quantum wells, Phys. Status Solidi A 164 (1997), pp. 383–386.10.1002/(ISSN)1521-396X
  • C. Sirtori, F. Capasso, D.L. Sivco, and A.Y. Cho, Giant, triply resonant, third-order nonlinear susceptibility χ(3)3ω in coupled quantum wells, Phys. Rev. Lett. 68 (1992), pp. 1010–1013.10.1103/PhysRevLett.68.1010
  • M. Zal/użny, Influence of the depolarization effect on the nonlinear intersubband absorption spectra of quantum wells, Phys. Rev. B 47 (1993), pp. 3995–3998.10.1103/PhysRevB.47.3995
  • E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph Bois, and J. Nagle, Quantum engineering of optical nonlinearities, Science 271 (1996), pp. 168–173.10.1126/science.271.5246.168
  • S. Baskoutas, E. Paspalakis, and A.F. Terzis, Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots, Phys. Rev. B 74 (2006), p. 153306.10.1103/PhysRevB.74.153306
  • W. Xie, Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot, Physica B 404 (2009), pp. 4142–4145.10.1016/j.physb.2009.07.177
  • İ. Karabulut, M.E. Mora-Ramos, and C.A. Duque, Nonlinear optical rectification and optical absorption in GaAs–Ga1–xAlxAs asymmetric double quantum wells: combined effects of applied electric and magnetic fields and hydrostatic pressure, J. Lumi. 131 (2011), pp. 1502–1509.10.1016/j.jlumin.2011.03.044
  • M. Kouhi, A. Vahedi, A. Akbarzadeh and Y. Hanifehpour, Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot, Nanoscale Res. Lett. 9 (2014), p. 131.10.1186/1556-276X-9-131
  • B.Y. Tong and N. Kiriushcheva, Band-gap engineering of a Sech-squared potential in heterojunctions, Phys. Lett. A 229 (1997), pp. 49–52.10.1016/S0375-9601(97)00168-0
  • N. Kirstaedter, O.G. Schmidt, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Yu Egorov, and A.E. Zhukov, Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers, Appl.Phys. Lett. 69 (1996), pp. 1226–1228.10.1063/1.117419
  • E. Rosencher and B. Vinter, Optoelectronics, Cambridge University Press, Cambridge, 2003.
  • F. Durante, P. Alves, G. Karunasiri, N. Hanson, M. Byloos, H.C. Liu, A. Bezinger, and M. Buchanan, NIR, MWIR and LWIR quantum well infrared photodetector using interband and intersubband transitions, Infrared Phys. Technol. 50 (2007), pp. 182–186.
  • A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, and H. Morkoç, "Dressed excitons" in a multiple-quantum-well structure: evidence for an optical Stark effect with femtosecond response time, Phys. Rev. Lett. 56 (1986), pp. 2748–2751.10.1103/PhysRevLett.56.2748
  • D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, Optical quantum-confined Stark effect in GaAs quantum wells, Phys. Rev. Lett. 59 (1987), pp. 1748–1751.10.1103/PhysRevLett.59.1748
  • W.H. Knox, D.S. Chemla, D.A.B. Miller, J.B. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: extreme low- and high-intensity limits, Phys. Rev. Lett. 62 (1989), pp. 1189–1192.10.1103/PhysRevLett.62.1189
  • N.G. Asmar, A.G. Markelz, E.G. Gwinn, J. Černe, M.S. Sherwin, K.L. Campman, P.F. Hopkins, and A.C. Gossard, Resonant-energy relaxation of terahertz-driven two-dimensional electron gases, Phys. Rev. B 51 (1995) p. 18041.10.1103/PhysRevB.51.18041
  • H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO (2011), Vol. 5951271.
  • M. Teich, M. Wagner, H. Schneider, and M. Helm, Semiconductor quantum well excitons in strong,narrowband terahertz fields, New J. Phys. 15 (2013), p. 065007.10.1088/1367-2630/15/6/065007
  • S. Zhang, I. Zeylikovich, T. Gayen, R. Alfano, and M. Tamargo, Energy splitting of CdSe quantum dots induced by intense femtosecond laser excitation, J. Vac. Sci. Technol. B 31 (2013), p. 03C120.
  • D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, Chichester, 1999.
  • M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 2001.
  • A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation, Phys. Rev. A 69 (2004), p. 062320.10.1103/PhysRevA.69.062320
  • O.V. Kibis, G. Ya. Slepyan, S.A. Maksimenko, and A. Hoffmann, Electronic properties of asymmetrical quantum dots dressed by laser field, Phys. Status Solidi B 249 (2012), pp. 914–917.10.1002/pssb.201100100
  • Q. Fanyao, A.L.A. Fonseca, and O.A.C. Nunes, Intense field effects on hydrogen impurities in quantum dots, J. Appl. Phys. 82 (1997), pp. 1236–1241.10.1063/1.365894
  • H.S. Brandi, A. Latgé, and L.E. Oliveira, Laser effects in semiconductor heterostructures within an extended dressed-atom approach, Brazilian J. Phys. 32 (2002), pp. 262–265.10.1590/S0103-97332002000200004
  • C.A. Duque, E. Kasapoglu, S. Sakiroglu, H. Sari, and I. Sökmen, Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field, Appl. Surf. Sci. 256 (2011), pp. 7406–7413.
  • E.C. Niculescu, A. Radu and M. Stafe, Laser effects on the donor states in V-shaped and inverse V-shaped quantum wells, Superlatt. Microstruct. 46 (2009), pp. 443–450.10.1016/j.spmi.2009.04.001
  • K. Köksal and M. Şahin, The effect of dilute nitrogen on nonlinear optical properties of the InGaAsN/GaAs single quantum wells, Eur. Phys. J. 85 (2012), p. 333.10.1140/epjb/e2012-30547-6
  • F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, M.A. Amato, and E.F. da Silva Jr., Effect of a terahertz laser field on the electron-DOS in a GaAs/AlGaAs cylindrical quantum wire: finite well model, Semicond. Sci. Technol. 23 (2008), p. 125038.10.1088/0268-1242/23/12/125038
  • E.C. Niculescu, L.M. Burileanu, A. Radu, and A. Lupaşcu, Anisotropic optical absorption in quantum well wires induced by high-frequency laser fields, J. Lumin. 131 (2011), pp. 1113–1120.10.1016/j.jlumin.2011.02.028
  • A. Radu, A.A. Kirakosyan, D. Laroze, and M.G. Barseghyan, The effects of the intense laser and homogeneous electric fields on the electronic and intraband optical properties of a GaAs/Ga0.7Al0.3As quantum ring, Semicond. Sci. Technol. 30 (2015), p. 045006.10.1088/0268-1242/30/4/045006
  • W. Xie, Optical absorption and refractive index of an exciton quantum dot under intense laser radiation, Phys. E 43 (2011), pp. 1704–1707.10.1016/j.physe.2011.05.026
  • A. Radu, E.C. Niculescu, and M. Cristea, Dielectric modulation of nonlinear optical properties in ZnO quantum dots under intense laser fields, Sci. Adv. Mater. 7 (2015), pp. 1–12.
  • E.C. Niculescu, N. Eseanu, and A. Radu, Optical absorption and refractive index of an exciton quantum dot under intense laser radiation, Opt. Commun. 294 (2013), pp. 276–282.10.1016/j.optcom.2012.12.038
  • M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, and I. Sökmen, Electron-related nonlinearities in GaAs–Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field, J. Lumin. 135 (2013), pp. 301–311.10.1016/j.jlumin.2012.09.025
  • M. G. Barseghyan, C. A. Duque, E. C. Niculescu, and A. Radu, Intense laser field effects on the linear and nonlinear optical properties in a semiconductor quantum wire with triangle cross section, Superlatt. Microstruct. 66 (2014), pp. 10–22.10.1016/j.spmi.2013.11.023
  • İ. Karabulut, Laser field effect on the nonlinear optical properties of a square quantum well under the applied electric field, Appl. Surf. Sci. 256 (2010), pp. 7570–7574.10.1016/j.apsusc.2010.06.004
  • D. Ahn and S.-L. Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field, IEEE J. Quantum Electron. 23 (1987), pp. 2196–2204.
  • E. Paspalakis, J. Boviatsis, and S. Baskoutas, Effects of probe field intensity in nonlinear optical processes in asymmteric semiconductor quantum dots, J. Appl. Phys. 114 (2013), p. 153107.10.1063/1.4825320
  • S. Selstø and M. Førre, Coherent single-electron transport between coupled quantum dots, Phys. Rev. B 74 (2006), p. 195327.10.1103/PhysRevB.74.195327
  • A. Fountoulakis, A.F. Terzis, and E. Paspalakis, Coherent single-electron transfer in coupled quantum dots, J. Appl. Phys. 106 (2009), p. 074305.10.1063/1.3232226
  • A. Fountoulakis and E. Paspalakis, Coherent electron transfer in a coupled quantum dot nanostructure using stimulated Raman adiabatic passage, J. Appl. Phys. 113 (2013), p. 174301.10.1063/1.4803060
  • C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grinberg, Photons et Atomes, Introduction a l’Electrodynamique Quantique, Intereditions CNRS, Paris, 1987.
  • W.C. Henneberger, Perturbation method for atoms in intense light beams, Phys. Rev. Lett. 21 (1968), pp. 838–841.10.1103/PhysRevLett.21.838
  • M. Gavrila and J.Z. Kamiński, Free-free transitions in intense high-frequency laser fields, Phys. Rev. Lett. 52 (1984), pp. 613–616.10.1103/PhysRevLett.52.613
  • B.G. Enders, F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, D.A. Agrello, Fanyao Qu, E.F. Da Silva, and V. N. Freire, Jr., Electronic properties of a quasi-two-dimensional electron gas in semiconductor quantum wells under intense laser fields, Phys. Rev. B 70 (2004), p. 035307.10.1103/PhysRevB.70.035307
  • J.V. Lill, G.A. Parker, and J.C. Light, Discrete variable representations and sudden models in quantum scattering theory, Chem. Phys. Lett. 89 (1982), pp. 483–489.10.1016/0009-2614(82)83051-0
  • J.C. Light, I.P. Hamilton, and J.V. Lill, Generalized discrete variable approximation in quantum mechanics, J. Chem. Phys. 82 (1985), pp. 1400–1409.10.1063/1.448462
  • D.T. Colbert and W.H. Miller, A novel discrete variavle representation for quantum mechanical reactive scattering via the S matrix Kohn method, J. Chem. Phys. 96 (1992), pp. 1982–1991.10.1063/1.462100
  • N. Eseanu, Intense laser field effect on the interband absorption in differently shaped near-surface quantum wells, Phys. Lett. A 375 (2011), pp. 1036–1042.10.1016/j.physleta.2010.12.077
  • A. Radu, A.A. Kirakosyan, D. Laroze, H.M. Baghramyan, and M.G. Barseghyan, Electronic and intraband optical properties of single quantum rings under intense laser field radiation, J. Appl. Phys. 116 (2014), p. 093101.10.1063/1.4894446
  • A. Schneider, Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size, Phys. Rev. A 82 (2010), p. 033825.10.1103/PhysRevA.82.033825
  • G. Imeshev, M.E. Fermann, K.L. Vodopyanov, M.M. Fejer, X. Yu, J.S. Harris, D. Bliss, and C. Lynch, High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser, Opt. Express 14 (2006), pp. 4439–4444.10.1364/OE.14.004439
  • M. Nagai, K. Tanaka, H. Ohtake, and T. Bessho, Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses, Appl. Phys. Lett. 85 (2004), pp. 3974–3976.10.1063/1.1813645

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.