284
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

, , , &
Pages 1197-1211 | Received 27 Aug 2015, Accepted 19 Feb 2016, Published online: 10 Mar 2016

References

  • J.W. Kaczmar, K. Pietrzak, and W. Włosiński, The production and application of metal matrix composite materials, J. Mater. Process. Technol. 106 (2000), pp. 58–67.10.1016/S0924-0136(00)00639-7
  • M.K. Surappa, Aluminium matrix composites: Challenges and opportunities, Sadhana-Acad. Proc. Eng. Sci. 28 (2003), pp. 319–334.
  • J.M. Torralba, C.E. da Costa, and F. Velasco, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol. 133 (2003), p. 203–206.10.1016/S0924-0136(02)00234-0
  • M. Song, Y. He, and S. Fang, Yield stress of SiC reinforced aluminum alloy composites, J. Mater. Sci. 45 (2010), pp. 4097–4110.10.1007/s10853-010-4498-0
  • M. Song and D. Xiao, Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites, Mater. Sci. Eng.: A 474 (2008), p. 371–375.10.1016/j.msea.2007.05.075
  • H. Sevik and S.C. Kurnaz, Properties of alumina particulate reinforced aluminum alloy produced by pressure die casting, Mater. Des. 27 (2006), pp. 676–683.10.1016/j.matdes.2005.01.006
  • H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory, and H.R. Baharvandi, Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method, Mater. Des. 32 (2011), pp. 4417–4423.10.1016/j.matdes.2011.03.071
  • S. Bathula, R.C. Anandani, A. Dhar, and A.K. Srivastava, Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering, Mater. Sci. Eng.: A 545 (2012), pp. 97–102.10.1016/j.msea.2012.02.095
  • H.R. Hafizpour, A. Simchi, and S. Parvizi, Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations, Adv. Powder Technol. 21 (2010), pp. 273–278.10.1016/j.apt.2009.12.003
  • E. Mohammad Sharifi, F. Karimzadeh, and M.H. Enayati, Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites, Mater. Des. 32 (2011), pp. 3263–3271.10.1016/j.matdes.2011.02.033
  • I. Topcu, H.O. Gulsoy, N. Kadioglu, and A.N. Gulluoglu, Processing and mechanical properties of B4C reinforced Al matrix composites, J. Alloys Compd. 482 (2009), pp. 516–521.10.1016/j.jallcom.2009.04.065
  • E.A. Feest, Interfacial phenomena in metal-matrix composites, Composites 25 (1992), pp. 75–86.
  • R.M.a.Y.R. Mahajan, Interfaces in discontinuously reinforced metal-matrix composites, Defence Sci. J. 43 (1993), pp. 397–418.
  • T.P.D. Rajan, R.M. Pillai, and B.C. Pai, Review reinforcement coatings and interfaces in aluminium metal matrix composites, J. Mater. Sci. 33 (1998) pp. 3491–3503.10.1023/A:1004674822751
  • L.M. Tham, M. Gupta, and L. Cheng, Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites, Acta Mater. 49 (2001), pp. 3243–3253.10.1016/S1359-6454(01)00221-X
  • V.A. Abbasi Chianeh, H.R.M. Madaah Hosseini, and M. Nofar, Micro structural features and mechanical properties of Al-Al3Ti composite fabricated by in-situ powder metallurgy route, J. Alloys Compd. 473 (2009), pp. 127–132.10.1016/j.jallcom.2008.05.068
  • X.M. Wang, A. Jha, and R. Brydson, In situ fabrication of Al3Ti particle reinforced aluminium alloy metal-matrix composites, Mater. Sci. Eng.: A 364 (2004), pp. 339–345.10.1016/j.msea.2003.08.049
  • Y.C. Wang, M. Song, S. Ni, and Y. Xue, In situ formed core-shell structured particle reinforced aluminum matrix composites, Mater. Des. 56 (2014), pp. 405–408.10.1016/j.matdes.2013.11.030
  • Y. Xue, R.J. Shen, S. Ni, M. Song, and D.H. Xiao, Fabrication, microstructure and mechanical properties of Al-Fe intermetallic particle reinforced Al-based composites, J. Alloys Compd. 618 (2015), pp. 537–544.10.1016/j.jallcom.2014.09.009
  • B.S. Guo, S. Ni, R.J. Shen, and M. Song, Fabrication of Ti–Al3Ti core–shell structured particle reinforced Al based composite with promising mechanical properties, Mater. Sci. Eng. A. 639 (2015), pp. 269–273.
  • C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al–Al3Ti nanocomposites produced in situ by friction stir processing, Acta Mater. 54 (2006), pp. 5241–5249.10.1016/j.actamat.2006.06.054
  • S.H. Wang, P.W. Kao, and C.P. Chang, The strengthing effect of Al3Ti in ultrafine grained Al-Al3Ti alloys, Scr. Mater. 40 (1999), pp. 289–295.10.1016/S1359-6462(98)00423-0
  • L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A. 435-436 (2006), pp. 638–647.10.1016/j.msea.2006.07.077
  • H. Abdizadeh and M.A. Baghchesara, Investigation into the mechanical properties and fracture behavior of A356 aluminum alloy-based ZrO2-particle-reinforced metal-matrix composites, Mech. Compos. Mater. 49 (2013), pp. 571–576.10.1007/s11029-013-9373-z
  • A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk, and J. Eckert, Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio, Acta Mater. 54 (2006), pp. 157–166.10.1016/j.actamat.2005.08.036
  • L. Zhang, B.L. Wu, Y.H. Zhao, and X.H. Du, Exploration of Al-based matrix composites reinforced by hierarchically spherical agents, Int. J. Miner. Metall. Mater. 20 (2013), pp. 796–801.10.1007/s12613-013-0798-0
  • U.R. Kattner, J.C. Lin, and Y.A. Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metall. Trans. A 23 (1992), pp. 2081–2090.10.1007/BF02646001
  • Y. Paransky, L. Klinger, and I. Gotman, Kinetics of two-phase layer growth during reactive diffusion, Mater. Sci. Eng.: A 270 (1999), pp. 231–236.10.1016/S0921-5093(99)00186-0
  • I.C. Barlow, H. Jones, and W.M. Rainforth, The effect of heat treatment at 500–655°C on the microstructure and properties of mechanically alloyed Al–Ti–O based material, Mater. Sci. Eng.: A 351 (2003), pp. 344–357.10.1016/S0921-5093(02)00860-2
  • I.C. Barlow, H. Jones, and W.M. Rainforth, Evolution of microstructure and hardening, and the role of Al3Ti coarsening, during extended thermal treatment in mechanically alloyed Al-Ti-O based materials, Acta Mater. 49 (2001), pp. 1209–1224.10.1016/S1359-6454(01)00016-7
  • Reza Abbaschian, Lara Abbaschian, and Robert E. Reed-Hill, Physical Metallurgy Principles-IV, Cengage Learning, Stamford, 2009.
  • A. Lintanf-Salaün, A. Mantoux, E. Djurado, and E. Blanquet, Atomic layer deposition of tantalum oxide thin films for their use as diffusion barriers in microelectronic devices, Microelectron. Eng. 87 (2010), pp. 373–378.10.1016/j.mee.2009.06.015
  • K.A. Nazari, A. Nouri, and T. Hilditch, Effects of milling time on powder packing characteristics and compressive mechanical properties of sintered Ti-10Nb-3Mo alloy, Mater. Lett. 140 (2015), pp. 55–58.10.1016/j.matlet.2014.10.143
  • Z. Razavi Hesabi, H.R. Hafizpour, and A. Simchi, An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling, Mater. Sci. Eng.: A454–455 (2007), pp. 89–98.10.1016/j.msea.2006.11.129
  • M. Rahimian, N. Ehsani, N. Parvin, and H.R. Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy, J. Mater. Process. Technol. 209 (2009), pp. 5387–5393.10.1016/j.jmatprotec.2009.04.007
  • M.F. Moreno and C.J.R. González Oliver, Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction, Powder Technol. 206 (2011), pp. 297–305. 10.1016/j.powtec.2010.09.034
  • G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, and C. Bindal, The effect of sintering temperature on some properties of Cu–SiC composite, J. Alloys Compd. 509 (2011), pp. 6036–6042.10.1016/j.jallcom.2011.02.170
  • M. Hakamada, Y. Yamada, and T. Nomura, Effect of sintering temperature on compressive properties of porous aluminum produced by spark plasma sintering, Mater. Trans. 46 (2005), pp. 186–188.10.2320/matertrans.46.186
  • Y. He, Y. Jiang, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, and P.K. Liaw, Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect, Adv. Mater. 19 (2007), pp. 2102–2106.10.1002/(ISSN)1521-4095
  • J.G. Luo and V.L. Acoff, Interfacial reactions of titanium and aluminum during diffusion welding - A preliminary investigation evaluated the feasibility of joining laminated composites using cold-roll bonding followed by diffusion welding, Weld J. 79 (2000), pp. 239s–243s.
  • C.A.C. Sequeira and L. Amaral, Role of Kirkendall effect in diffusion processes in solids, Trans. Nonferrous Met. Soc. China 24 (2014), pp. 1–11.10.1016/S1003-6326(14)63021-1
  • S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana, and B.S. Chun, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Mater. Sci. Eng.: A 347 (2003), pp. 198–203.10.1016/S0921-5093(02)00593-2
  • J.M. Howe, Bonding, structure, and properties of metal/ceramic interfaces: Part 1 Chemical bonding, chemical reaction,and interfacial structure, Int. Mater. Rev. 38 (1993), pp. 233–256.10.1179/imr.1993.38.5.233
  • Y. Mishin and C. Herzig, Diffusion in the Ti-Al system, Acta Mater. 48 (2000), pp. 589–623.10.1016/S1359-6454(99)00400-0
  • H. Wu, G.H. Fan, X.P. Cui, L. Geng, S.H. Qin, and M. Huang, A novel approach to accelerate the reaction between Ti and Al, Micron. 56 (2014), pp. 49–53.10.1016/j.micron.2013.10.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.