804
Views
45
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A locally preferred structure characterises all dynamical regimes of a supercooled liquid

, , , &
Pages 1212-1227 | Received 08 Dec 2015, Accepted 22 Feb 2016, Published online: 11 Mar 2016

References

  • G.P. Johari and M. Goldstein, Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules, J. Chem. Phys. 55 (1970), pp. 2372–2399.
  • C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys. 88 (2000), pp. 3113–3157.
  • A. Cavagna, Supercooled liquids for pedestrians, Phys. Rep. 476 (2009), pp. 51–124.
  • W. Götze, Complex Dynamics of Glass-forming Liquids: A Mode-coupling Theory, Oxford University Press, New York, 2009.
  • T.R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A 40 (1989), pp. 1045–1054.
  • S. Karmakar, C. Dasgupta, and S. Sastry, Growing length scales and their relation to timescales in glass-forming liquids, Annu. Rev. Condens. Matter. Phys. 5 (2014), pp. 255–284.
  • S.A. Kivelson and G. Tarjus, In search of a theory of supercooled liquids, Nature Mater. 7 (2008), pp. 831–833.
  • P.G. Debenedetti and F.H. Stillinger, Supercooled liquids and the glass transition, Nature 410 (2001), pp. 259–267.
  • S.P. Das, Mode-coupling theory and the glass transition in supercooled liquids, Rev. Mod. Phys. 76 (2004), pp. 785–851.
  • C.A. Angell, Formation of glasses from liquids and biopolymers, J. Non-Cryst. Solids 354 (2008), pp. 4703–4712.
  • H. Tanaka, General view of a liquid-liquid phase transition, Phys. Rev. E 62 (2000), pp. 6968–6976.
  • E. Aharonov, E. Bouchbinder, H.G.E. Hentschel, V. Ilyin, N. Makedonska, I. Procaccia, and N. Schupper, Direct identification of the glass transition: Growing length scale and the onset of plasticity, Europhys. Lett. 77 (2007), p. 56002.
  • G. Tarjus, S.A. Kivelson, Z. Nussinov, and P. Viot, The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment, J. Phys.: Condens. Matter 17 (2005), pp. R1143–R1182.
  • M. Blodgett, T. Egami, Z. Nussinov, and K.F. Kelton, Unexpected universality in the viscosity of metallic liquids, arxiv:1407.7558 (2014).
  • S.P. Chen, T. Egami, and V. Vitek, Local fluctuations and ordering in liquid and amorphous metals, Phys. Rev. B 37 (1988), pp. 2440–2449.
  • H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Critical-like behavior of glass-forming liquids, Nature Mater. 9 (2010), pp. 324–331.
  • R.E. Baumer and M.J. Demkowicz, Glass transition by gelation in a phase separating alloy, Phys. Rev. Lett. 110 (2013), p. 145502.
  • A. Malins, J. Eggers, C.P. Royall, S.R. Williams, and H. Tanaka, Identification of long-lived clusters and their link to slow dynamics in a model glass, J. Chem. Phys. 138 (2013), p. 12A535.
  • D. Kivelson, S.A. Kivelson, X. Zhao, Z. Nussinov, and G. Tarjus, A thermodynamic theory of supercooled liquids, Physica A 216 (1995), pp. 27–38.
  • Z. Nussinov, Avoided phase transitions and glassy dynamics in a geometrically frustrated systems and non-Abelian theories, Phys. Rev. B 69 (2004), p. 014208.
  • T. Iwashita, D.M. Nicholson, and T. Egami, Elementary excitations and crossover phenomena in liquids, Phys. Rev. Lett. 110 (2013), p. 205504.
  • N.A. Mauro, A.J. Vogt, M.L. Johnson, J.C. Bendert, and K.F. Kelton, Anomalous structural evolution in \text{ Cu}\textsubscript{50}\text{ Zr}\textsubscript{50} glass-forming liquids, Appl. Phys. Lett. 103 (2013), p. 021904.
  • N.A. Mauro, M. Blodgett, M.L. Johnson, A.J. Vogt, and K.F. Kelton, A structural signature of liquid fragility, Nat. Commun. 5 (2014), pp. 1–7.
  • J.C. Bendert, A.K. Gangopahyay, N.A. Mauro, and K.F. Kelton, Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: An energy landscape interpretation, Phys. Rev. Lett. 109 (2012), p. 185901.
  • S. Plimpton, J. Comp. Phys. 117 (1995), pp. 1–19. Available at http://lammos.sandia.gov.
  • W.M. Brown and Y. Masako, Implementing molecular dynamics on hybrid high performance computers -- Three-body potentials, Comp. Phys. Comm. 184 (2013), pp. 2785–2793.
  • M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984), pp. 6443–6453.
  • M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel, Development of suitable potentials for simulation of liquid and amorphous Cu-Zr alloys, Philos. Mag. 11 (2009), pp. 967–987.
  • W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys. Rev. B 69 (2004), pp. 16–18.
  • C.H. Rycroft, G.S. Grest, J.W. Landry, and M.Z. Bazant, Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. E 74 (2006), p. 021306.
  • A.C.Y. Liu, M.J. Neish, G. Stokol, G.A. Buckley, L.A. Smilie, M.D. de Jonge, R.T. Ott, M.J. Kramer, and L. Bourgeois, Systematic mapping of icosahedral short-range order in a melt-spun \text{ Zr}\textsubscript{36}Cu\textsubscript{64} metallic glass, Phys. Rev. Lett. 110 (2013), p. 205505.
  • Y.Q. Cheng, H.W. Sheng, and E. Ma, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys, Phys. Rev. B 78 (2008), p. 014207.
  • J. Ding, Y.Q. Cheng, and E. Ma, Full icosahedra dominate local order in \text{ Cu}\textsubscript{64}\text{ Zr}\textsubscript{36} metallic glass and supercooled liquid, Acta Mater. 69 (2014), pp. 343–354.
  • H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium range order in metallic glasses, Nature 439 (2006), pp. 419–425.
  • R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, and L. Yang, Connectivity of icosahedra and a dramatically growing static length scale in Cu-Zr binary metallic glasses, Phys. Rev. B 87 (2013), p. 184203.
  • J.P. Hansen and I.R. McDonald, Theory of Simple Liquids, 3rd ed., Academic Print, Amsterdam, 2006, pp. 230–234.
  • M. Miller and P. Liaw, eds., Bulk Mettalic Glasses, An Overview, 1st ed., Springer, New York, 2008.
  • J.C. Slater, Atomic radii in crystals, J. Chem. Phys. 39 (1964), pp. 3199–3204.
  • M.T. Cicerone and M.D. Edinger, Enhanced translation of probe molecules in supercooled o-terphenyl: Signature of spatially heterogeneous dynamics? J. Chem. Phys 104 (1996), pp. 7210–7218.
  • M.K. Mapes, S.F. Swallen, and M.D. Ediger, Self-diffusion of supercooled o-terphenyl near the glass transition temperature, J. Phys. Chem. B 110 (2006), pp. 507–511.
  • S. Swallen, P. Bonvallet, R. McMahon, and M. Ediger, Self-diffusion of tris-naphthylbenzene near the glass transition temperature, Phys. Rev. Lett. 90 (2003), pp. 1–4.
  • J. Brillo, A.I. Pommrich, and A. Meyer, Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation, Phys. Rev. Lett. 107 (2011), pp. 1–4.
  • J. Brillo, S.M. Chathoth, M.M. Koza, and A. Meyer, Liquid Al80Cu20: Atomic diffusion and viscosity, Appl. Phys. Lett. 93 (2008), pp. 1–4.
  • A. Meyer, W. Petry, M. Koza, and M.P. Macht, Fast diffusion in ZrTiCuNiBe melts, Appl. Phys. Lett. 83 (2003), pp. 3894–3896.
  • A. Jaiswal, T. Egami, and Y. Zhang, Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering, Phys. Rev. B 91 (2015), pp. 1–14.
  • S.W. Basuki, A. Bartsch, F. Yang, K. Rtzke, A. Meyer, and F. Faupel, Decoupling of component diffusion in a glass-forming Zr46.75Ti8.25Cu7.5Ni10Be27.5 melt far above the liquidus temperature, Phys. Rev. Lett. 113 (2014), pp. 1-–5.
  • Y. Zhang, C. Wang, M. Mendelev, F. Zhang, M.J. Kramer, and K.M. Ho, Diffusion in a Cu-Zr metallic glass studied by microsecond-scale molecular dynamics simulations, Phys. Rev. B. 91 (2015), pp. 1–5.
  • D.B. Miracle, W.S. Sanders, and O.N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses, Philos. Mag. 83 (2003), pp. 2409–2428.
  • Z.W. Wu, M.Z. Li, W.H. Wang, and K.X. Liu, Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids, Phys. Rev. B 88 (2013), p. 054202.
  • M. Lee, C. Lee, K. Lee, E. Ma, and J. Lee, Networked interpenetrating connections of icosahedra: Effects on shear transformations in metallic glass, Acta Mater. 59 (2011), pp. 159–170.
  • Y. Zhang, M.I. Mendelev, C.Z. Wang, R. Ott, F. Zhang, M.F. Besser, K.M. Ho, and M.J. Kramer, Impact deformation on the atomic structure and dynamics of a Cu-Zr metallic glass: A molecular dynamics study, Phys. Rev. B. 90 (2014), p. 174101.
  • M. Wakeda and Y. Shibutani, Icosahedral clustering with medium-range order and local elastic properties of amorphous metals, Acta Mater. 58 (2010), pp. 3963–3969.
  • Y. Liu, S.L. Ye, B. An, Y.G. Yang, Y.J. Li, L.C. Zhang, and W.M. Wang, Effects of mechanical compression and autoclave treatment on the backbone clusters in the Al86Ni9La5 amorphous alloy, J. Alloys Compd. 587 (2014), pp. 59–65.
  • Q. Wang, J.H. Li, J.B. Liu, and B.X. Liu, Effects of mechanical compression and autoclave treatment on the backbone clusters in the \text{ Al}\textsubscript{86}\text{ Ni}\textsubscript{9}\text{ La}\textsubscript{5} amorphous alloy, Phys. Chem. Chem. Phys. 16 (2014), pp. 19590–19601.
  • J.D. Hunter, Matplotlib: A 2D graphics environment, Comp. Sci. Eng. 9 (2007), pp. 90–95. Available at http://matplotlib.org/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.