567
Views
9
CrossRef citations to date
0
Altmetric
NTMRD V

Hydrogen-induced softening in nanocrystalline Ni investigated by nanoindentation

, , , , &
Pages 3442-3450 | Received 23 Nov 2015, Accepted 25 Feb 2016, Published online: 29 Mar 2016

References

  • M. Dao, L. Lu, Y.F. Shen, and S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins, Acta Mater. 54 (2006), pp. 5421–5432.10.1016/j.actamat.2006.06.062
  • I.-C. Choi, B.-G. Yoo, Y.-J. Kim, M.-Y. Seok, Y.M. Wang, and J.-I. Jang, Estimating the stress exponent of nanocrystalline nickel: sharp vs. spherical indentation, Scr. Mater. 65 (2011), pp. 300–303.10.1016/j.scriptamat.2011.04.031
  • D.-H. Lee, I.-C. Choi, M.-Y. Seok, J. He, Z. Lu, J.-Y. Suh, M. Kawasaki, T.G. Langdon, and J.-I. Jang, Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015), pp. 2804–2815.10.1557/jmr.2015.239
  • H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A 176 (1994), pp. 191–202.10.1016/0921-5093(94)90975-X
  • J.-A. Lee, D.-H. Lee, M.-Y. Seok, U.B. Baek, Y.-H. Lee, S.H. Nahm, and J.-I. Jang, Hydrogen-induced toughness drop in weld coarse-grained heat-affected zones of linepipe steel, Mater. Charact. 82 (2013), pp. 17–22.10.1016/j.matchar.2013.05.001
  • D.-H. Lee, J.-A. Lee, M.-Y. Seok, U.B. Baek, S.H. Nahm, and J.-I. Jang, Stress-dependent hardening-to-softening transition of hydrogen effects in nanoindentation of a linepipe steel, Int. J. Hydrogen Energy 39 (2014), pp. 1897–1902.10.1016/j.ijhydene.2013.11.060
  • L. Zaluski, A. Zaluska, and J.O. Ström-Olsen, Nanocrystalline metal hydrides, J. Alloys Compd. 253–254 (1997), pp. 70–79.10.1016/S0925-8388(96)02985-4
  • D.M. Doyle, G. Palumbo, K.T. Aust, A.M. El-Sherik, and U. Erb, The influence of intercrystalline defects on hydrogen activity and transport in nickel, Acta Mater. 43 (1995), pp. 3027–3033.10.1016/0956-7151(95)00019-R
  • B. Amin-Ahmadi, H. Idrissi, R. Delmelle, T. Pardoen, J. Proost, and D. Schryvers, High resolution transmission electron microscopy characterization of fcc → 9R transformation in nanocrystalline palladium films due to hydriding, Appl. Phys. Lett. 102 (2013), p. 071911.10.1063/1.4793512
  • B.N. Lucas and W.C. Oliver, Indentation power-law creep of high-purity indium, Metall. Mater. Trans. A 30 (1999), pp. 601–610.10.1007/s11661-999-0051-7
  • Y. Zhao, M.-Y. Seok, I.-C. Choi, Y.-H. Lee, S.-J. Park, U. Ramamurty, J.-Y. Suh, and J.-I. Jang, The role of hydrogen in hardening/softening steel: influence of the charging process, Scr. Mater. 107 (2015), pp. 46–50.10.1016/j.scriptamat.2015.05.017
  • D.F. Bahr, K.A. Nibur, K.R. Morasch, and D.P. Field, Hydrogen and deformation: nano- and microindentation studies, JOM-J. Min. Met. Mat. Soc. 55 (2003), pp. 47–50.10.1007/s11837-003-0226-4
  • W.Y. Choo and J.Y. Lee, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A 13 (1982), pp. 135–140.10.1007/BF02642424
  • Y. Fukai, Superabundant vacancies formed in metal-hydrogen alloys, Phys. Scr. T103 (2003), pp. 11–14.10.1238/Physica.Topical.103a00011
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583.10.1557/JMR.1992.1564
  • W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004), pp. 3–20.10.1557/jmr.2004.19.1.3
  • J.-I. Jang, M.J. Lance, S. Wen, T.Y. Tsui, and G.M. Pharr, Indentation-induced phase transformation in silicon: influences of load, rate and indenter angle on the transformation behavior, Acta Mater. 53 (2005), pp. 1759–1770.
  • Y.M. Wang, A.V. Hamza, and E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni, Acta Mater. 54 (2006), pp. 2715–2726.10.1016/j.actamat.2006.02.013
  • U.F. Kocks, A.S. Argon, and M.F. Ashby, Thermodynamics and kinetics of slip, Prog. Mater. Sci. 19 (1975), pp. 1–291.
  • F. Dalla Torre, H. Van Swygenhoven, and M. Victoria, Nanocrystalline elctrodeposited Ni: microstructure and tensile properties, Acta Mater. 50 (2002), pp. 3957–3970.10.1016/S1359-6454(02)00198-2
  • V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al, J. Mater. Res. 26 (2011), pp. 1421–1430.10.1557/jmr.2011.156
  • H. Matsui, H. Kimura, and A. Kimura, The effects of hydrogen on the mechanical properties of high purity iron III. The dependence of softening on specimen size and charging current density, Mater. Sci. Eng. 40 (1979), pp. 227–234.10.1016/0025-5416(79)90193-9
  • A.E. Pontini and J.D. Hermida, X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel, Scr. Mater. 37 (1997), pp. 1831–1837.10.1016/S1359-6462(97)00332-1
  • M. Wen, S. Fukuyama, and K. Yokogawa, Hydrogen-affected cross-slip process in fcc nickel, Phys. Rev. B 69 (2004), p. 174108–174113.10.1103/PhysRevB.69.174108
  • G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., Singapore, 2011, pp. 203–207.
  • D.G. Morris, Strengthening mechanisms in nanocrystalline metals, in Nanostructured Metals and Alloys, S.H. Whang, ed., Woodhead Publishing Limited, Cambridge, 2011, pp. 297–328.
  • M.W. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation twinning in nanocrystalline aluminum, Science 300 (2003), pp. 1275–1277.10.1126/science.1083727
  • Y. Fukai, Formation of superabundant vacancies in M-H alloys and some of its consequences: a review, J. Alloys Compd. 356–357 (2003), pp. 263–269.10.1016/S0925-8388(02)01269-0
  • H. Momida, Y. Asari, Y. Nakamura, Y. Tateyama, and T. Ohno, Hydrogen-enhanced vacancy embrittlement of grain boundaries in iron, Phys. Rev. B 88 (2013), p. 144107–144119.10.1103/PhysRevB.88.144107
  • K. Kirchheim, Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations, Scr. Mater. 62 (2010), pp. 67–70.10.1016/j.scriptamat.2009.09.037
  • M. Zamanzade, H. Vehoff, and A. Barnoush, Cr effect on hydrogen embrittlement of Fe3Al-based iron aluminide intermetallics: surface or bulk effect, Acta Mater. 69 (2014), pp. 210–223.10.1016/j.actamat.2014.01.042
  • M. Wen, A. Barnoush, and K. Yokogawa, Calculation of all cubic single-crystal elastic constants from single atomistic simulation: hydrogen effect and elastic constants of nickel, Comput. Phys. Commun. 182 (2011), pp. 1621–1625.10.1016/j.cpc.2011.04.009
  • A. Barnoush and H. Vehoff, Electrochemical nanoindentation: a new approach to probe hydrogen/deformation interaction, Scr. Mater. 55 (2006), pp. 195–198.10.1016/j.scriptamat.2006.03.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.