163
Views
19
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Charge order driven by Fermi-arc instability and its connection with pseudogap in cuprate superconductors

, &
Pages 1245-1262 | Received 04 Dec 2015, Accepted 26 Feb 2016, Published online: 28 Mar 2016

References

  • See, e.g. the review R. Comin and A. Damascelli, Resonant X-ray scattering studies of charge order in cuprates, Annu. Rev. Condens. Matter Phys. 7 (2016), pp. 369–405.
  • T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn, and M.-H. Julien, Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy, Nature 477 (2011), pp. 191–194.
  • J. Chang, E. Blackburn, A.T. Holmes, N.B. Christensen, J. Larsen, J. Mesot, R. Liang, D.A. Bonn, W.N. Hardy, A. Watenphul, M.V. Zimmermann, E.M. Forgan, and S.M. Hayden, Direct observation of competition between superconductivity and charge density wave order in YBa2u3O6.67, Nat. Phys. 8 (2012), pp. 871–876.
  • G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D.C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G.A. Sawatzky, E. Weschke, B. Keimer, and L. Braicovich, Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x, Science 337 (2012), pp. 821–825.
  • K. Fujita, M.H. Hamidian, S.D. Edkins, C.K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S.-I. Uchida, A. Allais, M.J. Lawler, E.-A. Kim, S. Sachdev, and J. C. S\’eamus Davis, Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates, Proc. Nat. Acad. Sci. 111 (2014), pp. E3026–E3032.
  • R. Comin, A. Frano, M.M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I.S. Elfimov, J.E. Hoffman, G.A. Sawatzky, B. Keimer, and A. Damascelli, Charge order driven by Fermi-arc instability in Bi2Sr2–x LaxCuO6+δ, Science 343 (2014), pp. 390–392.
  • E.H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates, Science 343 (2014), pp. 393–396.
  • M. Hashimoto, E.A. Nowadnick, R.-H. He, I.M. Vishik, B. Moritz, Y. He, K. Tanaka, R.G. Moore, D. Lu, Y. Yoshida, M. Ishikado, T. Sasagawa, K. Fujita, S. Ishida, S. Uchida, H. Eisaki, Z. Hussain, T.P. Devereaux, and Z.-X. Shen, Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+δ: Nat. Mater. 14 (2015), pp. 37–42.
  • R. Comin, R. Sutarto, F. He, E.H. da Silva Neto, L. Chauviere, A. Fra\~{n}o, R. Liang, W.N. Hardy, D.A. Bonn, Y. Yoshida, H. Eisaki, A.J. Achkar, D.G. Hawthorn, B. Keimer, G.A. Sawatzky, and A. Damascelli, Symmetry of charge order in cuprates, Nat. Mater. 14 (2015), pp. 796–800.
  • T. Takahashi, H. Matsuyama, H. Katayama-Yoshida, Y. Okabe, S. Hosoya, K. Seki, H. Fujimoto, M. Sato, and H. Inokuchi, Band structure of Bi2Sr2CaCu2O8 studied by angle-resolved photoemission, Phys. Rev. B 39 (1989), pp. 6636–6639.
  • J.C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B.W. Veal, J.Z. Liu, A.P. Paulikas, K. Vandervoort, H. Claus, R.S. List, A.J. Arko, and R.J. Bartlett, Fermi surfaces of YBa2Cu3O6.9 as seen by angle-resolved photoemission, Phys. Rev. Lett. 64 (1990), pp. 2308–2311.
  • C.G. Olson, R. Liu, D.W. Lynch, R.S. List, A.J. Arko, B.W. Veal, Y.C. Chang, P.Z. Jiang, and A.P. Paulikas, High-resolution angle-resolved photoemission study of the Fermi surface and the normal-state electronic structure of Bi2Sr2CaCu2O8, Phys. Rev. B 42 (1990), pp. 381–386.
  • D.S. Marshall, D.S. Dessau, A.G. Loeser, C.-H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, and Z.-X. Shen, Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ: angle-resolved photoemission results, Phys. Rev. Lett. 76 (1996), pp. 4841–4844.
  • A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, and A. Kapitulnik, Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ, Science 273 (1996), pp. 325–329.
  • H. Ding, M.R. Norman, T. Yokoya, T. Takeuchi, M. Randeria, J.C. Campuzano, T. Takahashi, T. Mochiku, and K. Kadowaki, Evolution of the Fermi surface with carrier concentration in Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 78 (1997), pp. 2628–2631.
  • M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D.G. Hinks, Destruction of the Fermi surface in underdoped high-Tc superconductors, Nature 392 (1998), pp. 157–160.
  • A. Kanigel, M.R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H.M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z.Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, and J.C. Campuzano, Evolution of the pseudogap from Fermi arcs to the nodal liquid, Nature Phys. 2 (2006), pp. 447–451.
  • T. Yoshida, X.J. Zhou, K. Tanaka, W.L. Yang, Z. Hussain, Z.-X. Shen, A. Fujimori, S. Sahrakorpi, M. Lindroos, R.S. Markiewicz, A. Bansil, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, and S. Uchida, Systematic doping evolution of the underlying Fermi surface of La2-xSrxCuO4: Phys. Rev. B 74 (2006), pp. 224510-1–224510-5.
  • K. Tanaka, W.S. Lee, D.H. Lu, A. Fujimori, T. Fujii, Risdiana, I. Terasaki, D.J. Scalapino, T.P. Devereaux, Z. Hussain, and Z.-X. Shen, Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212, Science 314 (2006), pp. 1910–1913.
  • A. Kanigel, U. Chatterjee, M. Randeria, M.R. Norman, S. Souma, M. Shi, Z.Z. Li, H. Raffy, and J.C. Campuzano, Protected nodes and the collapse of Fermi arcs in high-Tc cuprate superconductors, Phys. Rev. Lett. 99 (2007), pp. 157001-1–157001-4.
  • K. Nakayama, T. Sato, Y. Sekiba, K. Terashima, P. Richard, T. Takahashi, K. Kudo, N. Okumura, T. Sasaki, and N. Kobayashi, Evolution of a pairing-induced pseudogap from the superconducting gap of Bi, Pb)2Sr2CuO6, Phys. Rev. Lett. 102 (2009), pp. 227006-1–227006-4.
  • T. Yoshida, M. Hashimoto, S. Ideta, A. Fujimori, K. Tanaka, N. Mannella, Z. Hussain, Z.-X. Shen, M. Kubota, K. Ono,S. KomiyaY. AndoH. Eisaki, and S. Uchida, Universal versus material-dependent two-gap behaviors of the high-Tc cuprate superconductors: angle-resolved photoemission study of La2-xSrxCuO4, Phys. Rev. Lett. 103 (2009), pp. 037004-1–037004-4.
  • J.-Q. Meng, M. Brunner, K.-H. Kim, H.-G. Lee, S.-I. Lee, J.S. Wen, Z.J. Xu, G.D. Gu, and G.-H. Gweon, Momentum-space electronic structures and charge orders of the high-temperature superconductors Bi2Sr2CaCu2O8+δ, Phys. Rev. B 84 (2011), pp. 060513-1(R)–060513-6(R).
  • S.-I. Ideta, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, A. Ino, M. Arita, H. Namatame, M. Taniguchi, Z.-X. Shen, K. Takashima, K. Kojima, and S.-I. Uchida, Energy scale directly related to superconductivity in high-Tc cuprates: Universality from the temperature-dependent angle-resolved photoemission of Bi2Sr2 Ca2Cu3O10+δ, Phys. Rev. B 85 (2012), pp. 104515-1–104515-5.
  • T. Kondo, A.D. Palczewski, Y. Hamaya, T. Takeuchi, J.S. Wen, Z.J. Xu, G. Gu, and A. Kaminski, Formation of gapless Fermi arcs and fingerprints of order in the pseudogap state of cuprate superconductors, Phys. Rev. Lett. 111 (2013), pp. 157003-1–157003-4.
  • P.A. Lee, Amperean pairing and the pseudogap phase of cuprate superconductors, Phys. Rev. X 4 (2014), pp. 031017-1–031017-13.
  • N. Harrison and S.E. Sebastian, On the relationship between charge ordering and the Fermi arcs observed in underdoped high Tc superconductors, New J. Phys. 16 (2014), pp. 063025, 1–9.
  • S. Sachdev and R. La Placa, Bond order in two-dimensional metals with antiferromagnetic exchange interactions, Phys. Rev. Lett. 111 (2013), pp. 027202-1–027202-5.
  • H. Meier, M. Einenkel, C. Pépin, and K.B. Efetov, Effect of magnetic field on the competition between superconductivity and charge order below the pseudogap state, Phys. Rev. B 88 (2013), pp. 020506-1(R)–020506-5(R).
  • W.A. Atkinson, A.P. Kampf, and S. Bulut, Charge order in the pseudogap phase of cuprate superconductors, New J. Phys. 17 (2015), pp. 013025, 1–14.
  • See, e.g. the review P. Phillips, Identifying the propagating charge modes in doped Mott insulators, Rev. Mod. Phys. 82 (2010), pp. 1719–1742.
  • See, e.g. the review E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66 (1994), pp. 763–840.
  • W. Stephan and P. Horsch, Fermi surface and dynamics of the t-J model at moderate doping, Phys. Rev. Lett. 66 (1991), pp. 2258–2261.
  • E. Dagotto, F. Ortolani, and D. Scalapino, Single-particle spectral weight of a two-dimensional Hubbard model, Phys. Rev. B 46 (1992), pp.3183–3186(R).
  • A. Moreo, D.J. Scalapino, R.L. Sugar, S.R. White, and N.E. Bickers, Numerical study of the two-dimensional Hubbard model for various band fillings, Phys. Rev. B 41 (1990), pp. 2313–2320.
  • See, e.g. the review S. Feng, Y. Lan, H. Zhao, L. Kuang, L. Qin, and X. Ma, Kinetic-energy driven superconductivity in cuprate superconductors, Int. J. Mod. Phys. B 29 (2015), pp. 1530009-1–1530009-93.
  • See, e.g. the review P.A. Lee, N. Nagaosa, and X.G. Wen, Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys. 78 (2006), pp. 17–85.
  • See, e.g. the review L. Yu, Many body problems in high temperature superconductivity, in Recent Progress in Many-body Theories, Vol. 3, T.L. Ainsworth, C.E. Campbell, B.E. Clements, and E. Krotscheck, eds., Plenum, New York, 1992, p. 157.
  • S. Feng, L. Kuang, and H. Zhao, Electronic structure of cuprate superconductors in a full charge-spin recombination scheme, Physica C 517 (2015), pp. 5–15; S. Feng, L. Kuang, and H. Zhao, Electron-momentum distribution of cuprate superconductors in a full charge-spin recombination scheme, Mod. Phys. Lett. B 29 (2015), pp. 1550178-1–1550178-11.
  • J.G. Bednorz and K.A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64 (1986), pp. 189–193.
  • P.W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235 (1997), pp. 1196–1198.
  • S. Feng, J. Qin, and T. Ma, A gauge invariant dressed holon and spinon description of the normal-state of underdoped cuprates, J. Phys.: Condens. Matter 16 (2004), pp. 343–359; S. Feng, Z.B. Su, and L. Yu, Fermion-spin transfaormation to implement the charge-spin separation, Phys. Rev. B 49 (1994), pp. 2368–2384.
  • S. Feng, Kinetic energy driven superconductivity in doped cuprates, Phys. Rev. B 68 (2003), pp. 184501-1–184501-7; S. Feng, F. Ma, and H. Guo, Magnetic nature of superconductivity in doped cuprates, Physica C 436 (2006), pp. 14–24.
  • S. Feng, H. Zhao, and Z. Huang, Two gaps with one energy scale in cuprate superconductors, Phys. Rev. B. 85 (2012), pp. 054509-1–054509-7.
  • See, e.g. G.D. Mahan, Many-particle Physics, Plenum Press, New York, 1981.
  • H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. Hinks, Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission, Phys. Rev. Lett. 87 (2001), pp. 227001-1–227001-4.
  • D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J.-I. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O’Donnell, J.N. Eckstein, and Z.-X. Shen, Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ, Science 289 (2000), pp. 277–281.
  • K. Tanaka, T. Yoshida, A. Fujimori, D.H. Lu, Z.-X. Shen, X.-J. Zhou, H. Eisaki, Z. Hussain, S. Uchida, Y. Aiura, K. Ono, T. Sugaya, T. Mizuno, and I. Terasaki, Effects of next-nearest-neighbor hopping t’ on the electronic structure of cuprate superconductors, Phys. Rev. B 70 (2004), pp. 092503-1–092503-4.
  • C. Gros, B. Edegger, V.N. Muthukumar, and P.W. Anderson, Determining the underlying Fermi surface of strongly correlated superconductors, Proc. Nat. Acad. Sci 103 (2006), pp. 14298–14301.
  • A. Paramekanti, M. Randeria, and N. Trivedi, Projected wave functions and high temperature superconductivity, Phys. Rev. Lett. 87 (2001), pp. 217002-1-217002-4.
  • B. Edegger, V.N. Muthukumar, C. Gros, and P.W. Anderson, Electronic structure of strongly correlated d-wave superconductors, Phys. Rev. Lett. 96 (2006), pp. 207002-1–207002-4.
  • M. Randeria, H. Ding, J.-C. Campuzano, A. Bellman, G. Jennings, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Momentum distribution sum rule for angle-resolved photoemission, Phys. Rev. Lett. 74 (1995), pp. 4951–4954.
  • See, e.g. the review J.C. Campuzano, M.R. Norman, and M. Randeira, Photoemission in the high Tc superconductors, in the physics of superconductors, in The Physics of Superconductors, Vol. II, Chapter 5, K.H. Bennemann and J.B. Ketterson, eds. Springer, Berlin Heidelberg New York, 2004, pp. 167–273.
  • L. Qin, J. Qin, and S. Feng, Pseudogap and charge dynamics in doped cuprates, Physica C 497 (2014), 77–83; L. Qin, J. Qin, and S. Feng, Effect of the pseudogap on the infrared response in cuprate superconductors, Phil. Mag. Lett. 94 (2014), 387–394; S. Feng and Z. Huang, Charge dynamics of copper oxide materials, Phys. Lett. A 232 (1997), 293–298.
  • C.E. Matt, C.G. Fatuzzo, Y. Sassa, M. Mansson, S. Fatale, V. Bitetta, X. Shi, S. Pailhes, M.H. Berntsen, T. Kurosawa, M. Oda, N. Momono, O.J. Lipscombe, S.M. Hayden, J.-Q. Yan, J.-S. Zhou, J.B. Goodenough, S. Pyon, T. Takayama, H. Takagi, L. Patthey, A. Bendounan, E. Razzoli, M. Shi, N.C. Plumb, M. Radovic, M. Grioni, J. Mesot, O. Tjernberg, and J. Chang, Electron scattering, charge order, and pseudogap physics in La1.6-xNd0.4SrxCuO4: an angle-resolved photoemission spectroscopy study, Phys. Rev. B 92 (2015), pp. 134524-1–134524-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.