455
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Transformation-rate maxima during lath martensite formation: plastic vs. elastic shape strain accommodation

, &
Pages 1420-1436 | Received 22 Oct 2015, Accepted 11 Mar 2016, Published online: 01 Apr 2016

References

  • E.S. Machlin and M. Cohen , Burst phenomenon in martensitic transformation , Trans. AIME. 191 (1951), pp. 746–754.
  • R. Brook and A. Entwisle , Kinetics of burst transformation to martensite , J. Iron Steel Inst. 203 (1965), pp. 905–912.
  • Z. Yu and P. Clapp , Growth dynamics study of the martensitic transformation in Fe-30% Ni alloys: Part I. Quantitative measurements of growth velocity , Metall. Trans. A. 20 (1989), pp. 1601–1615.10.1007/BF02663194
  • A. Amengual , F. Garcias , F. Marco , C. Segui , and V. Torra , Acoustic emission of the interface motion in the martensitic transformation of Cu–Zn–Al shape memory alloy , Acta Metall. 36 (1988), pp. 2329–2334.10.1016/0001-6160(88)90332-X
  • M.C. Gallardo , J. Manchado , F.J. Romero , J. del Cerro , E.K.H. Salje , A. Planes , E. Vives , R. Romero , M. Stipcich , Avalanche criticality in the martensitic transition of Cu67.64 Zn16.71Al15.65 shape-memory alloy: A calorimetric and acoustic emission study , Phys. Rev. B. 81 (2010) pp. 174102/1–174102/8.
  • R. Niemann , J. Kopeček , O. Heczko , J. Romberg , L. Schultz , S. Fähler , E. Vives , L. Manosa , A. Planes , Localizing sources of acoustic emission during the martensitic transformation , Phys. Rev. B. 89 (2014), 214118/1–214118/11.
  • Y. Liu , F. Sommer , and E.J. Mittemeijer , Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys , Acta Mater. 51 (2003), pp. 507–519.10.1016/S1359-6454(02)00434-2
  • Y.C. Liu , F. Sommer , and E.J. Mittemeijer , Kinetics of the abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys , Acta Mater. 52 (2004), pp. 2549–2560.10.1016/j.actamat.2004.02.003
  • R.E. Cech and D. Turnbull , Heterogeneous nucleation of martensite transformation , Trans AIME. 206 (1956), pp. 124–132.
  • G. Olson , K. Tsuzaki , and M. Cohen , Statistical aspects of martensitic nucleation, MRS Proc. 57 (1985), pp. 129–148.10.1557/PROC-57-129
  • S. Loewy , B. Rheingans , S.R. Meka , and E.J. Mittemeijer , Unusual martensite-formation kinetics in steels: observation of discontinuous transformation rates , Acta Mater. 64 (2014), pp. 93–99.10.1016/j.actamat.2013.11.052
  • S. Loewy , B. Rheingans , S.R. Meka , and E.J. Mittemeijer , Modulated martensite formation behavior in Fe–Ni-based alloys; athermal and thermally activated mechanisms , J. Mater. Res. 30 (2015), pp. 2101–2107.10.1557/jmr.2015.175
  • A. Marder and G. Krauss , Formation of low-carbon martensite in Fe–C alloys , Trans. ASM. 62 (1969), pp. 957–964.
  • B.P.J. Sandvik and C.M. Wayman , Characteristics of lath martensite: Part I. Crystallographic and substructural features , Metall. Trans. A. 14 (1983), pp. 809–822.10.1007/BF02644284
  • S. Morito , X. Huang , T. Furuhara , T. Maki , and N. Hansen , The morphology and crystallography of lath martensite in alloy steels , Acta Mater. 54 (2006), pp. 5323–5331.10.1016/j.actamat.2006.07.009
  • K. Wakasa and C. Wayman , The morphology and crystallography of ferrous lath martensite. Studies of Fe-20%Ni-5%Mn—I. Optical microscopy , Acta Metall. 29 (1981), pp. 973–990.10.1016/0001-6160(81)90051-1
  • H. Kitahara , R. Ueji , N. Tsuji , and Y. Minamino , Crystallographic features of lath martensite in low-carbon steel , Acta Mater. 54 (2006), pp. 1279–1288.10.1016/j.actamat.2005.11.001
  • S. Morito , H. Tanaka , R. Konishi , T. Furuhara , and T. Maki , The morphology and crystallography of lath martensite in Fe–C alloys , Acta Mater. 51 (2003), pp. 1789–1799.10.1016/S1359-6454(02)00577-3
  • L. Qi , A.G. Khachaturyan , and J.W. Morris , The microstructure of dislocated martensitic steel: Theory , Acta Mater. 76 (2014), pp. 23–39.
  • G. Miyamoto , A. Shibata , T. Maki , and T. Furuhara , Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis , Acta Mater. 57 (2009), pp. 1120–1131.10.1016/j.actamat.2008.10.050
  • S. Zhang , S. Morito , and Y. Komizo , Variant selection of low carbon high alloy steel in an austenite grain during martensite transformation , ISIJ Int. 52 (2012), pp. 510–515.10.2355/isijinternational.52.510
  • J. Marder and A. Marder , The morphology of iron-nickel massive martensite , Trans. ASM. 62 (1969), pp. 1–10.
  • G. Krauss and A. Marder , The morphology of martensite in iron alloys , Metall. Trans. 2 (1971), pp. 2343–2357.10.1007/BF02814873
  • Instructions of first use of a BÄHR-Dilatometer DIL801, DIL801L, DIL802, DIL802L, DIL803, DIL803L, 2001.
  • T.G. Kollie , Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the Curie temperature , Phys. Rev. B. 16(1977), pp. 4872–4881.
  • EDAX-TSL , OIM analysis 7 user manual, 2013.
  • M. Umemoto and W. Owen , Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy , Metall. Trans. 5 (1974), pp. 2041–2046.10.1007/BF02644497
  • W. Xiong , H. Zhang , L. Vitos , and M. Selleby , Magnetic phase diagram of the Fe–Ni system , Acta Mater. 59 (2011), pp. 521–530.10.1016/j.actamat.2010.09.055
  • G. Olson and A. Roitburd , Martensitic nucleation , in Martensite , ASM International, Metals Park, OH, 1992, pp. 150–174.
  • G. Olson and M. Cohen , A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation , Metall. Mater. Trans. A. 7 (1976), pp. 1897–1904.
  • G. Olson and M. Cohen , A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations , Metall. Mater. Trans. A. 7 (1976), pp. 1905–1914.
  • G. Ghosh and G.B. Olson , Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation – I. The critical driving force for athermal nucleation , Acta Metall. Mater. 42 (1994), pp. 3361–3370.10.1016/0956-7151(94)90468-5
  • W. Baumann , A. Leineweber , and E.J. Mittemeijer , The kinetics of a polytypic Laves phase transformation in TiCr2 , Intermetallics. 19 (2011), pp. 526–535.10.1016/j.intermet.2010.11.027
  • R. Bauer , E.A. Jägle , W. Baumann , and E.J. Mittemeijer , Kinetics of the allotropic hcp–fcc phase transformation in cobalt , Philos. Mag. 91 (2011), pp. 437–457.10.1080/14786435.2010.525541
  • M. Lin , G.B. Olson , and M. Cohen , Distributed-activation kinetics of heterogeneous martensitic nucleation , Metall. Mater. Trans. A. 23 (1992), pp. 2987–2998.10.1007/BF02646117
  • H. Yang and H. Bhadeshia , Austenite grain size and the martensite-start temperature , Scr. Mater. 60 (2009), pp. 493–495.10.1016/j.scriptamat.2008.11.043
  • J.R.C. Guimarães and P.R. Rios , Martensite start temperature and the austenite grain-size , J. Mater. Sci. 45 (2009), pp. 1074–1077.
  • L. Kaufman and M. Cohen , Thermodynamics and kinetics of martensitic transformations , Prog. Met. Phys. 7 (1958), pp. 165–246.10.1016/0502-8205(58)90005-4
  • C.M. Wayman , Introduction to the Crystallography of Martensitic Transformazions , The Macmillan Company, New York, NY , 1964.
  • R.P. Reed , Lattice parameters of martensite and austenite in Fe–Ni alloys , J. Appl. Phys. 40 (1969), pp. 3453–3458.10.1063/1.1658218
  • G. Hausch and H. Warlimont , Single crystalline elastic constants of ferromagnetic face centered cubic Fe–Ni invar alloys , Acta Metall. 21 (1973), pp. 401–414.10.1016/0001-6160(73)90197-1
  • H.M. Ledbetter and R.P. Reed , Elastic properties of metals and alloys, i. iron, nickel, and iron–nickel alloys , J. Phys. Chem. Ref. Data. 2 (1973), pp. 531–617.10.1063/1.3253127
  • D.K. Chaudhuri , P.A. Ravidran , and J.J. Wert , Comparative X-ray diffraction and electron microscopic study of the transformation-induced substructures in the iron–nickel martensites and their influence on the martensite properties , J. Appl. Phys. 43 (1972), pp. 778–788.10.1063/1.1661280
  • H. Zhang , M.P.J. Punkkinen , B. Johansson , S. Hertzman , and L. Vitos , Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory , Phys. Rev. B – Condens. Matter Mater. Phys. 81 (2010), pp. 184105/1–184105/14.
  • S. Morito , H. Saito , T. Ogawa , T. Furuhara , and T. Maki , Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels , ISIJ Int. 45 (2005), pp. 91–94.10.2355/isijinternational.45.91
  • E. Owen , E. Yates , and A. Sully , An X-ray investigation of pure iron-nickel alloys. Part 4: The variation of lattice-parameter with composition , Proc. Phys. Soc. 49 (1937), pp. 315–322.10.1088/0959-5309/49/3/313
  • H.K.D.H. Bhadeshia , Worked Examples in the Geometry of Crystals , 2nd ed., Institute of Materials, London, 2001.
  • P. Kelly , Crystallography of lath martensite in steels , Mater. Trans. JIM. 33 (1992), pp. 235–242.10.2320/matertrans1989.33.235
  • S. Loewy , L. Hjordt , B. Rheingans , and E.J. Mittemeijer , Modulated formation of lath martensite; influence of uniaxial compressive load and transformation-induced plasticity , Acta Mater. 109 (2016), pp. 46–54.
  • J.W. Christian , The Theory of Transformations in Metals and Alloys , Pergamon Press, Oxford, 2002.
  • E.J. Mittemeijer , Fundamentals of Materials Science , Springer, Berlin, Heidelberg, 2011.10.1007/978-3-642-10500-5