327
Views
10
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theoretical investigations on vibrational properties and thermal conductivities of ternary antimonides TiXSb, ZrXSb and HfXSb (X = Si, Ge)

, &
Pages 1712-1723 | Received 26 Jun 2015, Accepted 25 Mar 2016, Published online: 29 Apr 2016

References

  • T.M. Tritt and M.A. Subramanian, Thermoelectric materials, phenomena, and applications: A bird’s eye view, Mater. Res. Bull. 31 (2006), pp. 188–198.10.1557/mrs2006.44
  • C. Sevik and T. Çağın, Investigation of thermoelectric properties of chalcogenide semiconductors from first principles, J. Appl. Phys. 109 (2011), p. 123712.10.1063/1.3597823
  • D.M. Rowe (ed.), CRC Handbook of Thermoelectrics, CRC Press, New York, 1995.
  • P.K. Rawat, B. Paul, and P. Banerji, Thermoelectric properties of PbSe0.5Te0.5: x (PbI2 ) with endotaxial nanostructures: A promising n-type thermoelectric material, Nanotechnology 24 (2013), p. 215401.10.1088/0957-4484/24/21/215401
  • L.E. Bell, Cooling heating, generating power, and recovering waste heat with thermoelectric systems, Science 321 (2008), pp. 1457–1461.
  • C.R. Sankar, S. Bangarigadu-Sanasy, A. Assoud, and H. Kleinke, Syntheses, crystal structures and thermoelectric properties of two new thallium tellurides: Tl4ZrTe4 and Tl4HfTe4, J. Mater. Chem. 20 (2010), p. 7485.10.1039/c0jm01363c
  • T. Thonhauser, Influence of negative pressure on thermoelectric properties of Sb2Te3, Solid State Commun. 129 (2004), pp. 249–253.10.1016/j.ssc.2003.10.006
  • R. Viennois, M.M. Koza, P. Jund, and J.C. Tedenac, Lattice dynamics of thermoelectric La4Sb3, Calphad 35 (2011), pp. 636–638.10.1016/j.calphad.2011.03.004
  • C. Wood, Materials for thermoelectric energy conversion, Rep. Progr. Phys. 51 (1988), pp. 459–539.10.1088/0034-4885/51/4/001
  • G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008), pp. 105–114.10.1038/nmat2090
  • H. Hachiuma and K. Fukuda, Activities and future vision of komatsu thermo modules, Proceeding of the 5th European Conference on Thermoelectrics, Odessa, Ukraine, 2007, pp. 1–4.
  • N. Soheilnia, K.M. Kleinke, and H. Kleinke, Crystal structure, electronic structure, and physical properties of two new antimonide−tellurides: ZrSbTe and HfSbTe, Chem. Mater. 19 (2007), pp. 1482–1488.10.1021/cm062705r
  • B. Xu, J. Liang, X. Li, J.F. Sun, and L. Yi, Thermoelectric performance of the filled-skutterudite LaFe4Sb12 and CeFe4Sb12, Eur. Phys. J. B 79 (2011), pp. 275–281.10.1140/epjb/e2010-10612-0
  • D. Parker, A.F. May, H. Wang, M.A. McGuire, B.C. Sales, and D.J. Singh, Electronic and thermoelectric properties of CoSbS and FeSbS, Phys. Rev. B 87 (2013), p. 045205.10.1103/PhysRevB.87.045205
  • K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, Thermoelectric properties of thallium antimony telluride, J. Alloys Compd. 376 (2004), pp. 43–48.10.1016/j.jallcom.2004.01.018
  • B. Du, H. Li, J. Xu, X. Tang, and C. Uher, Enhanced figure-of-merit in Se-doped p-type AgSbTe2 thermoelectric compound, Chem. Mater. 22 (2010), pp. 5521–5527.10.1021/cm101503y
  • R. Lam and A. Mar, New ternary zirconium antimonides, ZrSi0.7Sb1.3, ZrGeSb, and ZrSn0.4Sb1.6: A family containing ZrSiS-type and β-ZrSb2-type compounds, J. Solid State Chem. 134 (1997), pp. 388–394.10.1006/jssc.1997.7598
  • R. Lam and A. Mar, Titanium germanium antimonide, TiGeSb, Acta Crystallogr. Sect. E 65 (2009), pp. i68–i68.10.1107/S1600536809031559
  • E. Dashjav and H. Kleinke, Crystal and electronic structures of the new antimonides TiGeSb and HfGeSb, Z. Anorg. Allg. Chem. 628 (2002), pp. 2176–2176.10.1002/(ISSN)1521-3749
  • U.F. Ozyar, E. Deligoz, and K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds, Solid State Sci. 40 (2015), pp. 92–100.10.1016/j.solidstatesciences.2015.01.001
  • E. Deligoz, K. Colakoglu, H.B. Ozisik, and Y.O. Ciftci, Vibrational properties of Re2N and Re3N compounds, Solid State Commun. 151 (2011), pp. 1122–1127.10.1016/j.ssc.2011.05.028
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), pp. 558–561.10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169.10.1103/PhysRevB.54.11169
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979.10.1103/PhysRevB.50.17953
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • K.Parlinski, Software PHONON, 2010.
  • K. Parlinski, Z.Q. Li, and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78 (1997), pp. 4063–4066.10.1103/PhysRevLett.78.4063
  • D. Chattaraj and S.C. Parida, S. Dash, and C. Majumder, Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX3 (X=H, D and T) compounds, J. Alloys Compd. 629 (2015), pp. 297–304.10.1016/j.jallcom.2014.12.221
  • V. Brázdová and D.R. Bowler, Atomistic Computer Simulations, John Wiley & Sons, Weinheim, Germany, 2013.10.1002/9783527671816
  • K. Biswas and C.W. Myles, Electronic and vibrational properties of framework-substituted type-II silicon clathrates, Phys. Rev. B 75 (2007), p. 245205.10.1103/PhysRevB.75.245205
  • Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, Computational insight into the effect of monovalent cations on the electronic, optical, and lattice dynamic properties of XInSe2 (X = Cu, Ag, Li), J. Appl. Phys. 109 (2011), p. 113535.10.1063/1.3592238
  • H. Peng, C.L. Wang, J.C. Li, R.Z. Zhang, M.X. Wang, H.C. Wang, Y. Sun, and M. Sheng, Lattice dynamic properties of BaSi2 and BaGe2 from first principle calculations, Phys. Lett. A 374 (2010), pp. 3797–3800.10.1016/j.physleta.2010.07.037
  • E. Deligoz, K. Colakoglu, H. Ozisik, and Y.O. Cifti, The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure, Comput. Mater. Sci. 68 (2013), pp. 27–31.10.1016/j.commatsci.2012.10.006
  • C. Li, Y. Duan, and W. Hu, Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X = F, Cl or Br), J. Alloys Compd. 619 (2015), pp. 66–77.10.1016/j.jallcom.2014.09.022
  • D.R. Clarke, Communicative ıntent and conventionality, Surf. Coat. Technol. 163–164 (2003), pp. 67–74.10.1016/S0257-8972(02)00593-5
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003), pp. 383–417.10.1146/annurev.matsci.33.011403.113718
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), pp. 6131–6140.10.1103/PhysRevB.46.6131
  • Y.H. Duan, Y. Sun, and L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al–Pt–Ti system, Comput. Mater. Sci. 68 (2013), pp. 229–233.10.1016/j.commatsci.2012.11.012
  • E. Deligoz and H. Ozisik, Mechanical and dynamical stability of TiAsTe compound from ab initio calculations, Philos. Mag. 95 (2015), pp. 2294–2305.10.1080/14786435.2015.1056854
  • A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in Brillouin zones, Phys. Rev. B 91 (2015), p. 094306.10.1103/PhysRevB.91.094306
  • H. Ozisik, E. Deligoz, K. Colakoglu, and G. Surucu, Mechanical and lattice dynamical properties of the Re2C compound, Phys. Status Solidi RRL 4 (2010), pp. 347–349.10.1002/pssr.201004397
  • E. Deligoz, K. Colakoglu, and Y.O. Ciftci, Lattice dynamical and thermodynamical properties of ReB2 , RuB2, and OsB2 compounds in the ReB2 structure, Chin. Phys. B 21 (2012), p. 106301.10.1088/1674-1056/21/10/106301
  • H. Peng, C.L. Wang, J.C. Li, R.Z. Zhang, M.X. Wang, H.C. Wang, Y. Sun, and M. Sheng, Lattice dynamic properties of BaSi2 and BaGe2 from first principle calculations, Phys. Lett. A 374 (2010), pp. 3797–3800.10.1016/j.physleta.2010.07.037
  • B.K. Sarkar, A.S. Verma, S. Sharma, and S.K. Kundu, First-principles calculations of the structural, phonon and thermal properties of ZnX (X = S, Se, Te) chalcogenides, Phys. Scr. 89 (2014), p. 075704.10.1088/0031-8949/89/7/075704
  • E. Deligoz, K. Colakoglu, H.B. Ozisik, and Y.O. Ciftci, Lattice vibrational properties of Al2X (X = Sc, Y) from density functional theory calculations, Solid State Commun. 152 (2012), pp. 76–80.10.1016/j.ssc.2011.10.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.