289
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evidence for a transition in deformation mechanism in nanocrystalline pure titanium processed by high-pressure torsion

, , , , &
Pages 1632-1642 | Received 28 Nov 2015, Accepted 25 Mar 2016, Published online: 02 May 2016

References

  • H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000), pp. 1–29.10.1016/S1359-6454(99)00285-2
  • M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater. 55 (2007), pp. 4041–4065.10.1016/j.actamat.2007.01.038
  • X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu, Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP, Acta Mater. 50 (2002), pp. 2075–2084.10.1016/S1359-6454(02)00051-4
  • X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu, Deformation mechanism in nanocrystalline Al: Partial dislocation slip, Appl. Phys. Lett. 83 (2003), pp. 632–634.10.1063/1.1594836
  • X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Deformation twinning in nanocrystalline copper at room temperature and low strain rate, Appl. Phys. Lett. 84 (2004), pp. 592–594.10.1063/1.1644051
  • X.L. Wu and E. Ma, Dislocations in nanocrystalline grains, Appl. Phys. Lett. 88 (2006), pp. 231911-1–231911-3.
  • X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion, J. Appl. Phys. 96 (2004), pp. 636–640.10.1063/1.1757035
  • D.H. Shin, I. Kim, J. Kim, Y.S. Kim, and S.L. Semiatin, Microstructure development during equal-channel angular pressing of titanium, Acta Mater. 51 (2003), pp. 983–996.10.1016/S1359-6454(02)00501-3
  • I. Kim, J. Kim, D.H. Shin, C.S. Lee, and S.K. Hwang, Effects of equal channel angular pressing temperature on deformation structures of pure Ti, Mater. Sci. Eng. A 342 (2003), pp. 302–310.
  • N.V.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. Suery, Grain refinement in AZ91 magnesium alloy during thermomechanical processing, Mater. Sci. Eng. A 359 (2003), pp. 150–157.
  • X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, and K. Lu, Strain-induced grain refinement of cobalt during surface mechanical attrition treatment, Acta Mater. 53 (2004), pp. 681–691.
  • R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A 528 (2011), pp. 8198–8204.
  • S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Laverniad, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation, Mater. Sci. Eng. A 528 (2011), pp. 3398–3403.
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progr. Mater. Sci. 53 (2008), pp. 893–979.10.1016/j.pmatsci.2008.03.002
  • K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure formation mechanism of α-titanium using SMAT, Acta Mater. 52 (2004), pp. 4101–4110.10.1016/j.actamat.2004.05.023
  • Y. Todaka, J. Sasaki, T. Moto, and M. Umemoto, Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining, Scr. Mater 59 (2008), pp. 615–618.10.1016/j.scriptamat.2008.05.015
  • M.H. Yoo, S.R. Agnew, J.R. Morris, and K.M. Ho, Non-basal slip systems in HCP metals and alloys: Source mechanisms, Mater. Sci. Eng. A 321 (2001), pp. 87–92.
  • Y.V. Khlebnikova, L.Y. Egorova, V.P. Pilyugin, T.R. Suaridze, and A.M. Patselov, Evolution of the structure of an α-titanium single crystal during high-pressure torsion, Techn. Phys. 60 (2015), pp. 1005–1013.10.1134/S1063784215070142
  • M.H. Shih, C.Y. Yu, P.W. Kao, and C.P. Chang, Microstructure and flow stress of copper deformed to large plastic strains, Scr. Mater. 45 (2001), pp. 793–799.10.1016/S1359-6462(01)01098-3
  • K. Edalati, Y. Ito, K. Suehiro, and Z. Horita, Softening of high purity aluminum and copper processed by high pressure torsion, Int. J. Mater. Res. 100 (2009), pp. 1668–1673.10.3139/146.110231
  • A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater. 49 (2001), pp. 1199–1207.10.1016/S1359-6454(01)00020-9
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: A constitutive description, Acta Mater. 49 (2001), pp. 4025–4039.10.1016/S1359-6454(01)00300-7
  • K. Okazaki and H. Conrad, Effects of interstitial content and grain size on the strength of titanium at low temperatures, Acta Metall. 21 (1973), pp. 1117–1129.10.1016/0001-6160(73)90028-X
  • P.H.R. Pereira, R.B. Figueiredo, Y. Huang, P.R. Cetlin, and T.G. Langdon, Modeling the temperature rise in high-pressure torsion, Mater. Sci. Eng. A 593 (2014), pp. 185–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.