1,138
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations

, , , &
Pages 1757-1772 | Received 13 Jan 2016, Accepted 06 Apr 2016, Published online: 05 May 2016

References

  • S.I. Karato, Defects and Plastic Deformation in Olivine in Rheology of Solids and of the Earth, S.I. Karato and M. Toriumi, eds., Oxford Univ. Press, Oxford, 1989, pp. 177–208.
  • B. Evans, and D.L. Kohlstedt, Rheology of Rocks, in Handbook of Physical Constants–AGU Reference Shelf, Vol. 3, Rock Physics and Phase Relations, 1995, pp. 148–165.
  • J.P. Poirier, Plastic Rheology of Crystals in Handbook of Physical Constants–AGU Reference Shelf, Vol. 2: Mineral Physics and Crystallography, 1995, pp. 237–247.10.1029/RF002
  • G. Hirth, and D.L. Kohlstedt, Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime, J. Geophys. Res. 100 (1995), pp. 15441–15449.10.1029/95JB01292
  • L.N. Hansen, M.E. Zimmerman, and D.L. Kohlstedt, Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic preferred orientation, J. Geophys. Res. 116 (2011), p. B08201.
  • L.N. Hansen, M.E. Zimmerman, and D.L. Kohlstedt, The influence of microstructure on deformation of olivine in the grain-boundary sliding regime, J. Geophys. Res. Solid Earth. 117 (2012), p. B09201.
  • I. Jackson, U.H. Faul, and R. Skelton, Elastically accommodated grain-boundary sliding: New insights from experiment and modeling, Phys. Earth Planet. Inter. 228 (2014), pp. 203–210.10.1016/j.pepi.2013.11.014
  • W.T. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev. 78 (1950), pp. 275–289.10.1103/PhysRev.78.275
  • S. Heinemann, R. Wirth, M. Gottschalk, and G. Dresen, Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5°, Phys. Chem. Miner. 32 (2005), pp. 229–240.10.1007/s00269-005-0448-9
  • O. Adjaoud, K. Marquardt, and S. Jahn, Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling, Phys. Chem. Miner. 39 (2012), pp. 749–760.10.1007/s00269-012-0529-5
  • D.B. Ghosh and B.B. Karki, First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite, Phys. Chem. Miner. 41 (2014), pp. 163–171.10.1007/s00269-013-0633-1
  • N.H. de Leeuw, S.C. Parker, C.R.A. Catlow, and G.D. Price, Proton-containing defects at forsterite {010} tilt grain boundaries and stepped surfaces, Am. Mineral. 85 (2000), pp. 1143–1154.10.2138/am-2000-8-904
  • O.H. Nielsen and R.M. Martin, Quantum-mechanical theory of stress and force, Phys. Rev. B 32 (1985), pp. 3780–3791.10.1103/PhysRevB.32.3780
  • C. Fressengeas, V. Taupin, and L. Capolungo, Continuous modeling of the structure of symmetric tilt boundaries, Int. J. Solids Struct. 51 (2014), pp. 1434–1441.10.1016/j.ijsolstr.2013.12.031
  • C. Fressengeas, V. Taupin, and L. Capolungo, An elasto-plastic theory of dislocation and disclination fields, Int. J. Solids Struct. 48 (2011), pp. 3499–3509.10.1016/j.ijsolstr.2011.09.002
  • M. Upadhyay, L. Capolungo, V. Taupin, and C. Fressengeas, Grain boundary and triple junction energies in crystalline media: A disclination based approach, Int. J. Solids Struct. 48 (2011), pp. 3176–3193.10.1016/j.ijsolstr.2011.07.009
  • V. Taupin, L. Capolungo, C. Fressengeas, A. Das, and M. Upadhyay, Grain boundary modeling using an elasto-plastic theory of dislocation and disclination fields, J. Mech. Phys. Solids 61 (2013), pp. 370–384.10.1016/j.jmps.2012.10.001
  • V. Taupin, L. Capolungo, and C. Fressengeas, Disclination mediated plasticity in shear-coupled boundary migration, Int. J. Plast. 53 (2014), pp. 179–192.10.1016/j.ijplas.2013.08.002
  • P. Cordier, S. Demouchy, B. Beausir, V. Taupin, F. Barou, and C. Fressengeas, Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle, Nature 507 (2014), pp. 51–56.10.1038/nature13043
  • P.M. Gullett, M.F. Horstemeyer, M.I. Baskes, and H. Fang, A deformation gradient tensor and strain tensors for atomistic simulations, Modell. Simul. Mater. Sci. Eng. 16 (2007), p. 015001.
  • J.A. Zimmerman, D.J. Bammann, and H. Gao, Deformation gradients for continuum mechanical analysis of atomistic simulations, Int. J. Solids Struct. 46 (2009), pp. 238–253.10.1016/j.ijsolstr.2008.08.036
  • X.Y. Sun, V. Taupin, C. Fressengeas, and P. Cordier, Continuous description of the atomic structure of grain boundaries using dislocation and generalized-disclination density fields, Int. J. Plast. 77 (2016), pp. 75–89.10.1016/j.ijplas.2015.10.003
  • S. Jahn and P.A. Madden, Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMAS system, Phys. Earth Planet. Inter. 162 (2007), pp. 129–139.10.1016/j.pepi.2007.04.002
  • G.J. Martyna, D.J. Tobias, and M.L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101 (1994), pp. 4177–4189.10.1063/1.467468
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graphics 14 (1996), pp. 33–38.10.1016/0263-7855(96)00018-5
  • G.J. Finkelstein, K.D. Przemyslaw, S. Jahn, A.R. Oganov, C.M. Holl, Y. Meng, and T.S. Duffy, Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling, Am. Mineral. 99 (2014), pp. 35–43.10.2138/am.2014.4526
  • W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58 (2008), pp. 994–997.10.1016/j.scriptamat.2008.01.050