134
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theoretical assessment on mixing properties of liquid Tl–Na alloys

, , , &
Pages 1664-1683 | Received 31 Jul 2015, Accepted 06 Apr 2016, Published online: 02 May 2016

References

  • P.N. Alekseev, A.L. Shimkevich, and IYu Shimkevic, Eutectic Na–Tl and Pb–Mg alloys as liquid-metal coolants for fast nuclear reactors, Computational Methods and Experimental Measurements XVII, WIT Transactions on modeling and simulations 59, Opatija, 2015, pp. 343–353. http://dx.doi.org/10.2495/CMEM150311.
  • S. Takeda, S. Harada, S. Tamaki, E. Matsubara, and Y. Waseda, Structural study of liquid Na–Tl alloys by neutron diffraction. J. Non-Cryst. Solids 117–118 (1990), pp. 68–71. 10.1016/0022-3093(90)90880-U
  • R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelly. Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metal Park, OH, 1973, pp. 1191–1194.
  • S.K. Yadav, L.N. Jha, and D. Adhikari, Thermodynamic and structural behaviour of Tl–Na liquid alloy, BIBECHANA 12 (2015), pp. 20–29. Available at http://dx.doi.org/10.3126/bibechana.v12i0.11784.
  • D. Adhikari, I.S. Jha, and B.P. Singh, Structural asymmetry in liquid Fe–Si alloys. Philos. Mag. 90 (2010), pp. 2687–2694. 10.1080/14786431003745302
  • A.B. Bhatia, W.H. Hargrove, and D.E. Thornton, Concentration fluctuations and partial structure factors of compound-forming binary molten alloys. Phys. Rev. B 9 (1974), pp. 435–444.10.1103/PhysRevB.9.435
  • A.B. Bhatia and W.H. Hargrove, Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems. Phys. Rev. B 10 (1974), pp. 3186–3196.10.1103/PhysRevB.10.3186
  • A.B. Bhatia and R.N. Singh, Short range order and concentration fluctuations in regular and compound forming molten alloys. Phys. Chem. Liq. 11 (1982), pp. 285–313.10.1080/00319108208080752
  • A.B. Bhatia and R.N. Singh, A quasi-lattice theory for compound forming molten alloys. Phys. Chem. Liq. 13 (1984), pp. 177–190.10.1080/00319108408080778
  • A.B. Bhatia and R.N. Singh, Thermodynamic properties of compound forming molten alloys in a weak interaction approximation. Phys. Chem. Liq. 11 (1982), pp. 343–351.10.1080/00319108208080755
  • R. Novakovic, E. Ricci, D. Giuranno, and F. Gnecco, Surface properties of Bi–Pb liquid alloys, Surf. Sci. 515 (2002), pp. 377–389.10.1016/S0039-6028(02)01923-4
  • R. Novakovic, M.L. Muolo, and A. Passerone, Bulk and surface properties of liquid X-Zr (X=Ag, Cu) compound forming alloys. Surf. Sci. 549 (2004), pp. 281–293. 10.1016/j.susc.2003.12.006
  • R. Novakovic, Thermodynamics, surface properties and microscopic functions of liquid Al–Nb and Nb–Ti alloys. J. Non-Cryst. Solids 356 (2010), pp. 1593–1598.10.1016/j.jnoncrysol.2010.05.055
  • D. Adhikari, B.P. Singh, and I.S. Jha, Phase separation in Na–K liquid alloy. Phase Transitions 85 (2012), pp. 675–680.10.1080/01411594.2011.635903
  • F. Sommer, Thermodynamic properties of compound-forming liquid alloys. J. Non-Cryst. Solids 117–118 (1990), pp. 505–512.10.1016/0022-3093(90)90580-F
  • R.N. Singh, N.H. March, Liquids and vapor species, in Intermetallic Compounds, Principles & Practice Vol. 1-Principles, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons Ltd., Chichester, 1995, pp. 661–686.
  • A. Kasama, T. Iida, and Z. Morita, Viscosity of mercury-based dilute binary alloys. Trans. JIM 16 (1975), pp. 527–536. http://doi.org/10.2320/matertrans1960.16.527.
  • Y. Nishi, H. Watanabe, K. Suzuki, and T. Masumoto. Viscosities of Fe–C, Fe–P and Fe–P–C eutectic liquid alloys by a capillary method under reduced pressure. J. Phys. Colloques 41 (1980), pp.C8-359–C8-362. http://dx.doi.org/10.1051/jphyscol:1980890.
  • S. Seetharaman, K. Mukai, and Du Sichen, Viscosities of slags-an overview, VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, Johannesburg, 2004.
  • M. Tan, B. Xiufang, X. Xianying, Z. Yanning, G. Jing, and S. Baoan, Correlation between viscosity of molten Cu–Sn alloys and phase diagram. Physica B 387 (2007), pp. 1–5.10.1016/j.physb.2005.10.140
  • B.C. Anusionwu and G.A. Adebayo, Mixing properties in the In–Pb and In–Mg liquid alloys. Physica B 405 (2010), pp. 880–887.10.1016/j.physb.2009.10.007
  • T. Iida and R.I.L. Guthrie, The Thermophysical Properties of Metallic Liquids: Fundamentals Vol. 2, Oxford University Press, Oxford, 2015, p. 483.
  • G. Kaptay, A unified equation for the viscosity of pure liquid metals. Z. Metallkd. 96 (2005), pp. 1–8. Available at http://dx.doi.org/10.3139/146.018080.
  • I. Budai, M.Z. Benko, and G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys. Mater. Sci. Forum 537 (2007), pp. 489–496.10.4028/www.scientific.net/MSF.537-538
  • R.N. Singh and F. Sommer, Thermodynamic investigation of viscosity and diffusion in binary liquid alloys. Phys. Chem. Liq. 36 (1998), pp. 17–28.10.1080/00319109808035917
  • R.N. Singh and F. Sommer, Segregation and immiscibility in liquid binary alloys. Rep. Prog. Phys. 60 (1997), pp. 57–150.10.1088/0034-4885/60/1/003
  • O.K. Echendu, E.C. Mbamala, and B.C. Anusionwu, Theoretical investigation of the viscosity of some liquid metals and alloys. Phys. Chem. Liq. 49 (2011), pp. 247–258.10.1080/00319100903539520
  • W. Gasior, Viscosity modeling of binary alloys: Comparative studies. Calphad 44 (2014), pp. 119–128.10.1016/j.calphad.2013.10.007
  • J.A.V. Butler, The thermodynamics of the surfaces of the solutions. Proc. R. Soc. A: Math. Phys. Eng. Sci. 135 (1932), pp. 348–375.10.1098/rspa.1932.0040
  • L.C. Prasad, R.N. Singh, and G.P. Singh, The role of size effects on surface properties. Phys. Chem. Liq. 27 (1994), pp. 179–185.10.1080/00319109408029523
  • W.-H. Shih and D. Stroud, Theory of the surface tension of liquid metal alloys. Phys. Rev. B 32 (1985), pp. 804–811.10.1103/PhysRevB.32.804
  • S.M. Foiles and M.S. Daw, Applications of the embedded model to Ni3Al. J. Mater. Res. 2 (1987), pp. 5–15.10.1557/JMR.1987.0005
  • M. Asta, D. Morgan, J.J. Hoyt, B. Sadigh, J.D. Althoff, D. de Fontaine, and S.M. Foiles, Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni–Al allos. Phys. Rev. B 59 (1999), pp. 14271–14281.10.1103/PhysRevB.59.14271
  • L.C. Prasad and R.K. Jha, Surface tension and viscosity of Sn-based binary liquid alloys. Phys. Status Solidi A 202 (2005), pp. 2709–2719.10.1002/(ISSN)1521-396X
  • N.H. March and J.A. Alonso, Non-monotonic behaviour with concentration of the surface tension of certain binary liquid alloys. Phys. Chem. Liq. 46 (2008), pp. 522–526.10.1080/00319100801930466
  • B.C. Anusionwu, C.A. Madu, and C.E. Orji, Theoretical studies of mutual diffusitivites and surface properties in Cd–Ga liquid alloys. PRAMANA J. Phys. 72 (2009), pp. 951–967.10.1007/s12043-009-0088-6
  • A. Vegh, C. Mekler, and G. Kaptay, A unified theoretical framework to model bulk, surface and interfacial thermodynamic properties of immiscible liquid alloys. Mater. Sci. Forum 752 (2013), pp. 10–19.10.4028/www.scientific.net/MSF.752
  • M. Trybula, T. Gancarz, W. Gasior, and A. Pasturel, Bulk and surface properties of liquid Al–Li and Li–Zn alloys. Metall. Mater. Trans. A 45 (2014), pp. 5517–5530.10.1007/s11661-014-2524-6
  • R. Novakovic and E. Ricci, Surface and transport properties of Ni–Ti liquid alloys. J. Alloys Compd. 452 (2008), pp. 167–173.10.1016/j.jallcom.2007.01.176
  • R. Novakovic, D. Giuranno, E. Ricci, and T. Lanata, Surface and transport properties of In–Sn liquid alloys. Surf. Sci. 602 (2008), pp. 1957–1963.10.1016/j.susc.2008.03.033
  • R. Novakovic, D. Giuranno, E. Ricci, S. Delsante, D. Li, and G. Borzone, Bulk and surface properties of liquid Sb–Sn alloys. Surf. Sci. 605 (2011), pp. 248–255.10.1016/j.susc.2010.10.026
  • B.C. Anusionwu, Surface properties of some sodium-based binary liquid alloys. J. Alloys Compd. 359 (2003), pp. 172–179.10.1016/S0925-8388(03)00213-5
  • N. Jha and A.K. Mishra, Thermodynamic and surface properties of liquid Mg–Zn alloys. J. Alloys Compd. 329 (2001), pp. 224–229.10.1016/S0925-8388(01)01684-X
  • E.A. Guggenheim, Mixtures, Oxford University Press, London, 1952, pp. 172–179.
  • R.N. Singh, Short-range order and concentration fluctuations in binary molten alloys. Can. J. Phys. 65 (1987), pp. 309–325.10.1139/p87-038
  • H.C. Longuet-Higgins, The statistical thermodynamics of multicomponent systems. Proc. R. Soc. A: Math. Phys. Eng. Sci. 205 (1951), pp. 247–269.10.1098/rspa.1951.0028
  • A.B. Bhatia and D.E. Thornton, Structural aspects of the electrical resistivity of binary alloys. Phys. Rev. B 2 (1970), pp. 3004–3012.10.1103/PhysRevB.2.3004
  • B.E. Warren, X-ray Diffraction, Addison-Wesley Pub. Co. Inc., Reading, MA, 1969, p. 227.
  • J.M. Cowley, An approximate theory of order in alloys. Phys. Rev. 77 (1950), pp. 669–675.10.1103/PhysRev.77.669
  • E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, Reed Educational and Professional Publishing Ltd., Oxford, 1992.
  • E.A. Moelwyn-Hughes, Physical Chemistry, 2nd ed., Pergamon Press, Oxford, 1964.
  • S.M. Osman and R.N. Singh, Description of concentration fluctuations in liquid binary mixtures with nonadditive potentials. Phys. Rev. E 51 (1995), pp. 332–338.10.1103/PhysRevE.51.332
  • D. Giuranno, A. Tuissi, R. Novakovic, and E. Ricci, Surface tension and density of Al–Ni alloys, J. Chem. Eng. Data 55 (2010), pp. 3024–3028.10.1021/je901055j
  • G. Kaptay, Partial surface tension of components of a solution. Langmuir 31 (2015), pp. 5796–5804.10.1021/acs.langmuir.5b00217
  • W. Gasior, P. Fima, and Z. Moser, Modeling of the thermodynamic properties of liquid Fe–Ni and Fe–Co alloys from the surface tension data. Arch. Metall. Mater. 56 (2011), pp. 13–23. http://dx.doi.org/10.2478/v10172-011-0002-3.
  • R.P. Koirala, J. Kumar, B.P. Singh, and D. Adhikari, Bulk and surface properties of Co–Fe and Fe–Pd liquid alloys. J. Non-Cryst. Solids 394–395 (2014), pp. 9–15.10.1016/j.jnoncrysol.2014.04.001
  • G. Kaptay, A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mat. Sci. Eng., A. 495 (2008), pp. 19–26.10.1016/j.msea.2007.10.112
  • R. Novakovic and J. Brillo, Thermodynamics, thermophysical and structural properties of liquid Fe–Cr alloys. J. Mol. Liq. 200 (2014), pp. 153–159.10.1016/j.molliq.2014.09.053
  • C.H.P. Lupis and J.F. Elliott, Correlation between excess entropy and enthalpy functions. Trans. Met. Soc. AIME 236 (1966), pp. 130–131.
  • G. Kaptay, On the tendency of solutions to tend toward ideal solutions at high temperatures. Metall. Mater. Trans. A 43 (2012), pp. 531–543.10.1007/s11661-011-0902-x
  • G. Kaptay, A method to calculate equilibrium surface phase transition lines in monotectic systems. Calphad 29 (2005), pp. 56–67.10.1016/j.calphad.2005.04.004
  • I.S. Jha, R.N. Singh, P.L. Srivastava, and N.R. Mitra, Stability of HgNa and HgK liquid alloys. Philos. Mag. Part B 61 (1990), pp. 15–24.10.1080/13642819008208649

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.