435
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interaction of run-in edge dislocations with twist grain boundaries in Al-a molecular dynamics study

, , , &
Pages 1809-1831 | Received 29 Dec 2015, Accepted 06 Apr 2016, Published online: 05 May 2016

References

  • E.O. Hall, The deformation and ageing of mild steel: II Characteristics of the lüders deformation, Proc. Phys. Soc. 64 (1951), pp. 742–749.
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 173 (1953), pp. 25–27.
  • X. Huang, N. Hansen, and N. Tsuji, Hardening by annealing and nanostructured metals, Science 312 (2006), pp. 249–252.
  • Y. Wang, E. Ma, R.Z. Valiev, and Y. Zhu, Tough nanostructured metals at cryogenic temperatures, Adv. Mater. 16 (2004), pp. 328–331.
  • J.W. Cahn and J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater. 52 (2004), pp. 4887–4898.
  • X.Y. Zhang, B. Li, X.L. Wu, Y.T. Zhu, Q. Ma, Q. Li, P.T. Wang, and M.F. Horstemeyer, Twin boundaries showing very large deviations from the twinning plane, Scr. Mater. 67 (2012), pp. 862–865.
  • R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces, Acta Mater. 60 (2012), pp. 2855–2865.
  • J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang, Interface defects, reference spaces and the Frank-Bilby equation, Prog. Mater Sci. 58 (2013), pp. 749–823.
  • T.P. Darby, R. Schindler, and R.W.Balluffi, On the interaction of lattice dislocations with grain boundaries, Philos. Mag., A. 37 (1978), pp. 245–256.
  • T.C. Lee, I.M. Robertson, and H.K. Birnbaum, TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals, Philos. Mag., A. 62 (1990), pp. 131–153.
  • A. Gemperle, J. Gemperlovß, and N. Zßrubovß, Interaction of slip dislocations with grain boundaries in body-centered cubic bicrystals, Mater. Sci. Eng., A 387–389 (2004), pp. 46–50.
  • S.J. Fensin, S.M. Valone, E.K. Cerreta, J.P. Escobedo-Diaz, G.T. Gray, K. Kang, and J. Wang, Effect of grain boundary structure on plastic deformation during shock compression using molecular dynamics, Modell. Simul. Mater. Sci. Eng. 21 (2013), p. 015011.
  • S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Deformation twinning mechanisms from bimetal interfaces as revealed by in situ straining in the TEM, Acta Mater. 60 (2012), pp. 5858–5866.
  • Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals, Scr. Mater. 54 (2006), pp. 1163–1168.
  • N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu, Scr. Mater. 64 (2011), pp. 149–152.
  • J. Wang and I.J. Beyerlein, Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals, Modell. Simul. Mater. Sci. Eng. 20 (2012), p. 024002.
  • I.J. Beyerlein, J. Wang, M.R. Barnett, and C.N. Tome, Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations, Proc. R. Soc., A. 468 (2012), pp. 1496–1520.
  • I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, Structure-property-functionality of bimetal interfaces, J. Mater. 64 (2012), pp. 1192–1207.
  • S. Chandra, M.K. Samal, V.M. Chavan, and R.J. Patel, Atomistic simulations of interaction of edge dislocation with twist grain boundaries in Al-effect of temperature and boundary misorientation, Mater. Sci. Eng., A 646 (2015), pp. 25–32.
  • G. Lasko, D. Saraev, S. Schmauder, and P. Kizler, Atomic-scale simulations of the interaction between a moving dislocation and a bcc/fcc phase boundary, Comput. Mater. Sci. 32 (2005), pp. 418–425.
  • M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.A. Robertson, Energy of slip transmission and nucleation at grain boundaries, Acta Mater. 59 (2011), pp. 283–296.
  • M. Chassagne, M. Legros, and D. Rodney, Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni, Acta Mater. 59 (2011), pp. 1456–1463.
  • J. Wang, I.J. Beyerlein, and C.N. Tomé, Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations, Int. J. Plast. 56 (2014), pp. 156–172.
  • E.Q. Lin, H.J. Shi, L.S. Niu, and E.Z. Jin, Shock response of copper bicrystals with a Σ3 asymmetric tilt grain boundary, Comput. Mater. Sci. 59 (2012), pp. 94–100.
  • H.Y. Song, Y.L. Li, and M.R. An, Atomic simulations of the effect of twist grain boundaries on deformation behavior of nanocrystalline copper, Comput. Mater. Sci. 84 (2014), pp. 40–44.
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nature 1 (2002), pp. 1–5.
  • D. Feichtinger, P.M. Derlet, and H.V. Swygenhoven, Atomistic simulations of spherical indentations in nanocrystalline gold, Phys. Rev. B 67 (2003), p. 024113.
  • V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation, Acta Mater. 51 (2003), pp. 4135–4147.
  • A. Hasnaoui, P.M. Derlet, and H.V. Swygenhoven, Interaction between dislocations and grain boundaries under an indenter-a molecular dynamics simulation, Acta Mater. 52 (2004), pp. 2251–2258.
  • T. Shimokawa, T. Kinari, and S. Shintaku, Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations, Phys. Rev. B 75 (2007), p. 144108.
  • Z. Pan and T.J. Rupert, Damage nucleation from repeated dislocation absorption at a grain boundary, Comput. Mater. Sci. 93 (2014), pp. 206–209.
  • H.V. Swygenhoven, P.M. Derlet, and A. Hasnaoui, Atomic mechanism for dislocation emission from nanosized grain boundaries, Phys. Rev. B 66 (2002), p. 024101.
  • Y. Cheng, M. Mrovec, and P. Gumbsch, Atomistic simulations of interactions between the 1/2 (111) edge dislocation and symmetric tilt grain boundaries in tungsten, Philos. Mag. 88 (2008), pp. 547–560.
  • A. Froseth, P.M. Derlet, and H.V. Swygenhoven, Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance, Acta Mater. 52 (2004), pp. 5863–5870.
  • M.P. Dewald and W.A. Curtin, Multiscale modeling of dislocation/grain-boundary interactions: III. 60 degree dislocations impinging on Σ3, Σ9 and Σ11 tilt boundaries in Al, Modell. Simul. Mater. Sci. Eng. 19 (2011), p. 055002.
  • V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, and M. Ortiz, Quasicontinuum models of interfacial structure and deformation, Phys. Rev. Lett. 80 (1998), pp. 742–745.
  • M.P. Dewald and W.A. Curtin, Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al, Philos. Mag. 87 (2007), pp. 4615–4641.
  • X. Zhu and Y. Xiang, Continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phy. Solids 69 (2014), pp. 175–194.
  • L.H. Friedman and D.C. Chrzan, Continuum analysis of dislocation pile-ups: Influences of sources, Philos. Mag., A. 77 (1998), pp. 1185–1204.
  • M. de Koning, R. Miller, and V.V. Bulatov, Modelling grain-boundary resistance in intergranular dislocation slip transmission, Philos. Mag., A. 82 (2002), pp. 2511–2527.
  • S. Mahajan, D.E. Barry, and B.L. Eyre, A thin twin and its interaction with a coherent twin boundary in copper, Philos. Mag. 21 (2006), pp. 43–52.
  • S. Dai, Y. Xiang, and D.J. Srolovitz, Structure and energy of (111) low-angle twist boundaries in Al, Cu and Ni, Acta Mater. 61 (2013), pp. 1327–1337.
  • D. Schwartz, P.D. Bristowe, and V. Vitek, Dislocation structure and energy of high angle [001] twist boundaries: A computer simulation study, Acta Metall. 36 (1988), pp. 675–687.
  • B. Schönfelder, G. Gottstein, and L.S. Shvindlerman, Comparative study of grain-boundary migration and grain-boundary self-diffusion of [001] twist-grain boundaries in copper by atomistic simulations, Acta Mater. 53 (2005), pp. 1597–1609.
  • X. Yan and H. Zhang, On the atomistic mechanisms of grain boundary migration in [001] twist boundaries: Molecular dynamics simulations, Comput. Mater. Sci. 48 (2010), pp. 773–782.
  • L. Gao, H.Y. Song, Y. Sun, and Y.G. Zhang, Effects of twist twin boundary and stacking fault on crack propagation of nanocrystal Al, Comput. Mater. Sci. 95 (2014), pp. 484–490.
  • R. Monzen, M. Futakuchi, K. Kitagawa, and T. Mori, Measurement of grain bondary sliding of [011 ] twist grain boundaries in copper by electron microscopy, Acta Metall. Mater. 41 (1993), pp. 1643–1646.
  • S.D. Chen, Y.K. Zhou, and A.K. Soh, Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boundaries, Comput. Mater. Sci. 61 (2012), pp. 239–242.
  • X.M. Liu, X.C. You, Z.L. Liu, J.F. Nie, and Z. Zhuang, Atomistic simulations of tension properties for bi-crystal copper with twist grain boundary, J. Phys. D: Appl. Phys. 42 (2009), p. 035404.
  • G.F. Bomarito, Y. Lin, and D.H. Warner, An atomistic modeling survey of the shear strength of twist grain boundaries in aluminum, Scr. Mater. 101 (2015), pp. 72–75.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.
  • X.Y. Liu, F. Ercolessi, and J.B. Adams, Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy, Modell. Simul. Mater. Sci. Eng. 12 (2004), pp. 665–670.
  • Y.N. Osetsky and D.J. Bacon, An atomic-level model for studying the dynamics of edge dislocations in metals, Modell. Simul. Mater. Sci. Eng. 11 (2003), pp. 427–446.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2010), p. 015012.
  • A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Modell. Simul. Mater. Sci. Eng. 20 (2012), p. 085007.
  • J. Li, AtomEye : an efficient atomistic configuration viewer, Modell. Simul. Mater. Sci. Eng. 11 (2003), pp. 173–177.
  • D.V. Bachurin, D. Weygand, and P. Gumbsch, Dislocation-grain boundary interactions in <111> textured thin metal films, Acta Mater. 58 (2010), pp. 5232–5241.
  • A. Gouissem, R. Sarangi, Q. Deng, and P. Sharma, Bridging time-scales: Grain boundary sliding constitutive law from atomistics, Comput. Mater. Sci. 104 (2015), pp. 200–204.
  • S. Groh, E.B. Marin, M.F. Horstemeyer, and H.M. Zbib, Multiscale modeling of the plasticity in an aluminum single crystal, Int. J. Plast. 25 (2009), pp. 1456–1473.
  • M.P. Dewald and W.A. Curtin, Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in Al, Modell. Simul. Mater. Sci. Eng. 15 (2007), pp. S193–S215.
  • W. Bollmann, Crystal defects and crystalline interfaces, Springer-Verlag, New York, 1970.
  • E.S.P. Das and E.S. Dwarakadasa, Mechanism of the passage of crystal dislocations through tilt boundaries, J. Appl. Phys. 45 (1974), p. 574.
  • K. Afanasyev and F. Sansoz, Strengthening in gold nanopillars with nanoscale twins, Nano Lett. 7 (2007), pp. 2056–2062.
  • M. de Koning, W. Cai, and V.V. Bulatov, Anomalous dislocation multiplication in FCC metals, Phys. Rev. Lett. 91 (2003), p. 025503.
  • K. Kolluri, M.R. Gungor, and D. Maroudas, Atomic-scale analysis of defect dynamics and strain relaxation mechanisms in biaxially strained ultrathin films of face-centered cubic metals, J. Appl. Phys. 103 (2008), p. 123517.
  • S.M. Foiles and D.L. Medlin, Structure and climb of 1/3 <111> twin dislocations in aluminum, Mater. Sci. Eng., A 321 (2001), pp. 102–106.
  • D.L.Medlin, C.B.Carter, J.E.Angelo, et al., Climb and glide of a /3 (111) dislocations in an aluminium Σ3 boundary, Philos. Mag., A. 75 (1997), pp. 733–747.
  • D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Tensile strength of <100> and <110> tilt bicrystal copper interfaces, Acta Mater. 55 (2007), pp. 705–714.
  • J. Schiotz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003), pp. 1357–1359.
  • J.P. Hirth and J. Lothe, Theory of dislocations, Wiley, New York, 1982.
  • P.M. Derlet and H.V. Swygenhoven, Length scale effects in the simulation of deformation properties of nanocrystalline metals, Scr. Mater. 47 (2002), pp. 719–724.
  • H.V. Swygenhoven, P.M. Derlet, and A.G. Froseth, Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater. 54 (2006), pp. 1975–1983.
  • J. Wang, S.K. Yadav, J.P. Hirth, C.N. Tomé, and I.J. Beyerlein, Pure-Shuffle nucleation of deformation twins in hexagonal-close-packed metals, Mater. Res. Lett. 1 (2013), pp. 126–132.
  • Y. Wang, M. Chen, F. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002), pp. 912–915.
  • J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson, Dislocation interactions with grain boundaries, Curr. Opin. Solid State Mater. Sci. 18 (2014), pp. 227–243.
  • V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Deformation twinning in nanocrystalline Al by molecular- dynamics simulation, Acta Mater. 50 (2002), pp. 5005–5020.
  • P.M. Derlet, A. Hasnaoui, and H.V. Swygenhoven, Atomistic simulations as guidance to experiments, Scr. Mater. 49 (2003), pp. 629–635.
  • M.D. Sangid, H. Sehitoglu, H.J. Maier, and T. Niendorf, Grain boundary characterization and energetics of superalloys, Mater. Sci. Eng., A 527 (2010), pp. 7115–7125.
  • L. Patriarca, W. Abuzaid, H. Sehitoglu, and H.J. Maier, Slip transmission in bcc FeCr polycrystal, Mater. Sci. Eng., A 588 (2013), pp. 308–317.
  • M.J. Caturla, T.G. Nieh, and J.S. Stolken, Differences in deformation processes in nanocrystalline nickel with low- and high angle boundaries from atomistic simulations, Appl. Phys. Lett. 84 (2004), pp. 598–600.
  • Z.-H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals, Scr. Mater. 54 (2006), pp. 1163–1168.
  • T. Khraishi and H.M. Zbib, Dislocation dynamics simulations of the interaction between a short rigid fiber and a glide circular dislocation pile-up, Comput. Mater. Sci. 24 (2002), pp. 310–322.
  • S.S. Quek, Z. Wu, Y.W. Zhang, and D.J. Srolovitz, Polycrystal deformation in a discrete dislocation dynamics framework, Acta Mater. 75 (2014), pp. 92–105.
  • J.I. Zhang, S. Zaefferer, and D. Raabe, A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations, Mater. Sci. Eng., A 636 (2015), pp. 231–242.
  • C. Zhou and R. LeSar, Dislocation dynamics simulations of plasticity in polycrystalline thin films, Int. J. Plast. 30–31 (2012), pp. 185–201.
  • X.L. Peng and G.Y. Huang, Modeling dislocation absorption by surfaces within the framework of strain gradient crystal plasticity, Int. J. Solids Struct. 72 (2015), pp. 98–107.
  • A. Ma, F. Roters, and D. Raabe, Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations, Int. J. Solids Struct. 43 (2006), pp. 7287–7303.
  • S. Wulfinghoff and T. Böhlke, Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport, Int. J. Plast. 69 (2015), pp. 152–169.
  • D. Liu, Y. He, B. Zhang, and L. Shen, A continuum theory of stress gradient plasticity based on the dislocation pile-up model, Acta Mater. 80 (2014), pp. 350–364.
  • D.J. Luscher, J.R. Mayeur, H.M. Mourad, A. Hunter, and M.A. Kenamond, Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions, Int. J. Plast. 76 (2016), pp. 111–129.
  • D.M. Kochmann and K.C. Le, Dislocation pile-ups in bicrystals within continuum dislocation theory, Int. J. Plast. 24 (2008), pp. 2125–2147.
  • R.W. Lardner, Dislocation dynamics and the theory of the plasticity of single crystals, Zeitschrift für angewandte Mathematik und Physik ZAMP 20 (1969), pp. 514–529.
  • R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52 (1940), pp. 34–37.
  • F.R.N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. 256 (1946), pp. 256–272.
  • S. Akarapu and J.P. Hirth, Dislocation pile-ups in stress gradients revisited, Acta Mater. 61 (2013), pp. 3621–3629.
  • K.C. Le and H. Stumpf, Nonlinear continuum theory of dislocations, Int. J Eng. Sci. 34 (1996), pp. 339–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.