487
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries

, , , , , & show all
Pages 1926-1949 | Received 05 Jan 2016, Accepted 23 Apr 2016, Published online: 23 May 2016

References

  • R.R. MacPherson and D.J. Srolovitz, The von Neumann relation generalized to coarsening of three-dimensional microstructures, Nature 446 (2007), pp. 1053–1055.
  • L. Priester, Grain Boundaries: From Theory to Engineering, Springer, Dordrecht, 2013.
  • W.A. Johnson and R.A. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME 135 (1939), pp. 416–458.
  • A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed., J. Wiley & Sons, Chichester, 2000.
  • H. Altendorf, F. Latourte, D. Jeulin, M. Faessel, and L. Saintoyant, 3D reconstruction of a multiscale microstructure by anisotropic tessellation models, Image Anal. Stereology 33 (2014), pp. 121–130.
  • D. Jeulin, Random tessellations and Boolean random functions, in Mathematical Morphology and Its Applications to Signal and Image Processing, Springer, Berlin, Heidelberg, 2013, pp. 25–36.
  • K. Teferra and L. Graham-Brady, Tessellation growth models for polycrystalline microstructures, Comput. Mater. Sci. 102 (2015), pp. 57–67.
  • A. Alpers, A. Brieden, P. Gritzmann, A. Lyckegaard, and H.F. Poulsen, Generalized balanced power diagrams for 3D representations of polycrystals, Philos. Mag. 95 (2015), pp. 1016–1028.
  • A. Lyckegaard, E.M. Lauridsen, W. Ludwig, R.W. Fonda, and H.F. Poulsen, On the use of Laguerre tessellations for representations of 3D grain structures, Adv. Eng. Mater. 13 (2011), pp. 165–170.
  • A. Liebscher, Laguerre approximation of random foams, Philos. Mag. 95 (2015), pp. 2777–2792.
  • A. Liebscher, D. Jeulin, and C. Lantuéjoul, Stereological reconstruction of polycrystalline materials, J. Microsc. 258 (2015), pp. 190–199.
  • A. Spettl, T. Brereton, Q. Duan, T. Werz, C.E. Krill, D.P. Kroese, and V. Schmidt, Fitting Laguerre tessellation approximations to tomographic image data, Philos. Mag. 96 (2016), pp. 166–189.
  • O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 2nd ed., CRC Press, Boca Raton, FL, 2009.
  • A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron Backscatter Diffraction in Materials Science, Springer, New York, 2009, .
  • A.J. Wilkinson and T.B. Britton, Strains, planes, and EBSD in materials science, Mater. Today 15 (2012), pp. 366–376.
  • T.H. Scheike, Anisotropic growth of Voronoi cells, Adv. Appl. Probab. 26 (1994), pp. 43–53.
  • S.N. Chiu, D. Stoyan, W.S. Kendall, and J. Mecke, Stochastic Geometry and its Applications, 3rd ed., J. Wiley & Sons, Chichester, 2013.
  • F. Aurenhammer, A criterion for the affine equivalence of cell complexes in Rd and convex polyhedra in Rd+1, Discrete Comput. Geom. 2 (1987), pp. 49–64.
  • C. Lautensack and S. Zuyev, Random Laguerre tessellations, Adv. Appl. Probab. 40 (2008), pp. 630–650.
  • D.J. Rowenhorst, A.C. Lewis, and G. Spanos, Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy, Acta Mater. 58 (2010), pp. 5511–5519.
  • Q. Du and D. Wang, Anisotropic centroidal Voronoi tessellations and their applications, SIAM J. Sci. Comput. 26 (2005), pp. 737–761.
  • S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004.
  • V. Černý, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm, J. Optim. Theory Appl. 45 (1985), pp. 41–51.
  • S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983), pp. 671–680.
  • P.J. van Laarhoven, Simulated Annealing: Theory and Applications, Springer, Dordrecht, 1987.
  • R. Holley and D. Stroock, Simulated annealing via Sobolev inequalities, Commun. Math. Phys. 115 (1988), pp. 553–569.
  • C.J.P. Bélisle, Convergence theorems for a class of simulated annealing algorithms on Rd, J. Appl. Probab. 29 (1992), pp. 885–895.
  • P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Springer, New York, 1999.
  • S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984), pp. 721–741.
  • E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, J. Wiley & Sons, Chichester, 1989.
  • T.W. Anderson, Asymptotic theory for principal component analysis, Ann. Math. Stat. 34 (1963), pp. 122–148.
  • P. Siarry, G. Berthiau, F. Durdin, and J. Haussy, Enhanced simulated annealing for globally minimizing functions of many-continuous variables, ACM Trans. Math. Softw. 23 (1997), pp. 209–228.
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981.
  • K. Dám, P. Lejček, and A. Michalcová, In situ TEM investigation of microstructural behavior of superplastic Al--Mg--Sc alloy, Mater. Charact. 76 (2013), pp. 69–75.
  • M.A. Groeber and M.A. Jackson, DREAM.3D: A digital representation environment for the analysis of microstructure in 3D, Integr. Mater. Manuf. Innov. 3 (2014), pp. 1–17.
  • V. Beneš and A.M. Gokhale, Planar anisotropy revisited, Kybernetika 36 (2000), pp. 149–164.
  • M. Kiderlen and A. Pfrang, Algorithms to estimate the rose of directions of a spatial fibre system, J. Microsc. 219 (2005), pp. 50–60.
  • S.W. Cheong and H. Weiland, Understanding a microstructure using GOS (grain orientation spread) and its application to recrystallization study of hot deformed Al--Cu--Mg alloys, Mater. Sci. Forum 558–559 (2007), pp. 153–158.
  • F.J. Humphreys, Review Grain and subgrain characterisation by electron backscatter diffraction, J. Mater. Sci. 36 (2001), pp. 3833–3854.
  • A. Brahme, Y. Staraselski, K. Inal, and R.K. Mishra, Determination of the minimum scan size to obtain representative textures by electron backscatter diffraction, Metall. Mater. Trans. A 43 (2012), pp. 5298–5307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.