468
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Amorphous boron nitride at high pressure

Pages 1950-1964 | Received 14 Mar 2016, Accepted 23 Apr 2016, Published online: 18 May 2016

References

  • R.T. Paine and C.K. Narula, Synthetic routes to boron nitride, Chem. Rev. 90 (1990), pp. 73–91.
  • Y. Matsui, Y. Sekikawa, T. Sato, T. Ishii, S. Isakosawa, and K. Shii, Formations of rhombohedral boron nitride, as revealed by TEM-electron energy loss spectroscopy, J. Mater. Sci. 16 (1981), pp. 1114–1116.10.1007/BF00542761
  • R.H. Wentorf, Jr., Synthesis of the cubic form of boron nitride, J. Chem. Phys. 34 (1961), pp. 809–812.10.1063/1.1731679
  • F.P. Bundy and R.H. Wentorf, Jr., Direct transformation of hexagonal boron nitride to denser forms, J. Chem. Phys. 38 (1963), pp. 1144–1149.10.1063/1.1733815
  • V.I. Levitas, J. Hashemi, and Y.Z. Ma, Strain-induced disorder and phase transformation in hexagonal boron nitride under quasi-homogeneous pressure: In situ X-ray study in a rotational diamond anvil cell, Europhys Lett. 68 (2004), pp. 550–556.
  • F.R. Corrigan and F.P. Bundy, Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures, J. Chem. Phys. 63 (1975), pp. 3812–3820.10.1063/1.431874
  • V.F. Britun and A.V. Kurdyumov, Mechanisms of martensitic transformations in boron nitride and conditions of their development, High Press. Res. 17 (2000), pp. 101–111.
  • T. Taniguchi, T. Sato, W. Utsumi, T. Kikegawa, and O. Shimomura, Effect of non-hydrostaticity on the pressure induced phase transformation of rhombohedral boron nitride, Appl. Phys. Lett. 70 (1997), pp. 2392–2394.
  • V.L. Solozhenko and F. Elf, On the threshold pressure of the hBN-to-wBN phase transformation at room temperature, J. Superhard. Mater. 20 (1998), pp. 62–63.
  • N. Dubrovinskaia, V.L. Solozhenko, N. Miyajima, V. Dmitriev, O.O. Kurakevych, and L. Dubrovinsky, Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett. 90 (2007), pp. 101912–101914.
  • V.L. Solozhenko, G. Will, and F.J. Elf, The equation of state of hexagonal graphite-like boron nitride to 12 GPa and phase transformation hBN to wBN, Annual Report 1995, Hamburger Synchrotronstrahlungslabor (HASYLAB), Hamburg, Germany, Pt 2, p. 507, 1996.
  • V.I. Levitas, Y. Ma, J. Hashemi, M. Holtz, and N. Guven, Strain-induced disorder, phase transformations, and transformation-induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: In situ X-ray diffraction study and modeling, J. Chem. Phys. 125 (2006), pp. 044507–044520.
  • Y. Meng, H.K. Mao, P.J. Eng, T.P. Trainor, M. Newville, M.Y. Hu, C. Kao, J. Shu, D. Hausermann, and R.J. Hemley, The formation of sp3 bonding in compressed BN, Nat. Mater. 3 (2004), pp. 111–114.
  • S.N. Dub and I.A. Petrusha, Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique, High Press. Res. 26 (2006), pp. 71–77.
  • T. Taniguchi, T. Sato, W. Utsumi, T. Kikegawa, and O. Shimomura, In-situ X-ray observation of phase transformation of rhombohedral boron nitride under static high pressure and high temperature, Diamond Relat. Mater. 6 (1997), pp. 1806–1815.10.1016/S0925-9635(97)00143-X
  • H. Lorenz and I. Orgzall, Influence of the initial crystallinity on the high pressure–high temperature phase transition in boron nitride, Acta Mater. 52 (2004), pp. 1909–1916.10.1016/j.actamat.2003.12.030
  • V.F. Britun, A.V. Kurdyumov, N.I. Borimchuk, V.V. Yarosh, and A.I. Danilenko, Formation of diamond-like BN phases under shock compression of graphite-like BN with different degree of structural ordering, Diamond Relat. Mater. 16 (2007), pp. 267–276.10.1016/j.diamond.2006.06.017
  • L.C. Nistor, G. Van Tendeloo, and G. Dinca, Crystallographic aspects related to the high pressure–high temperature phase transformation of boron nitride, Philos. Mag. 85 (2005), pp. 1145–1158.10.1080/14786430412331325058
  • A.V. Kurdyumov, V.F. Britun, and I.A. Petrusha, Structural mechanisms of rhombohedral BN transformations into diamond-like phases, Diamond Relat. Mater. 5 (1996), pp. 1229–1235.10.1016/0925-9635(96)00515-8
  • C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, Z-BN: A novel superhard boron nitride phase, Phys. Chem. Chem. Phys. 14 (2012), pp. 10967–10971.10.1039/c2cp41368j
  • C. Jiang, J. Zhao, and R. Ahuja, A novel superhard BN allotrope under cold compression of h-BN, J. Phys. Condens. Matter. 25 (2013), pp. 122204–122209.10.1088/0953-8984/25/12/122204
  • L. Hromadová and R. Martoňák, Pressure-induced structural transitions in BN from ab initio metadynamics, Phys. Rev. B 84 (2011), pp. 224108–224114.10.1103/PhysRevB.84.224108
  • S. Zhang, Q. Wang, Y. Kawazoe, and P. Jena, Three-dimensional metallic boron nitride, J. Am. Chem. Soc. 135 (2013), pp. 18216–18221.10.1021/ja410088y
  • T. Taniguchi, K. Kimoto, M. Tansho, S. Horiuchi, and S. Yamaoka, Phase transformation of amorphous boron nitride under high pressure, Chem. Mater. 15 (2003), pp. 2744–2751.10.1021/cm021763j
  • B.P. Singh, G. Nover, and G. Will, High pressure phase transformations of cubic boron nitride from amorphous boron nitride using magnesium boron nitride as the catalyst, J. Cryst. Growth 152 (1995), pp. 143–149.10.1016/0022-0248(95)00058-5
  • J.Y. Huang and Y.T. Zhu, Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures, Chem. Mater. 14 (2002), pp. 1873–1878.10.1021/cm0109645
  • H. Lorenz and I. Orgzall, In situ observation of the crystallization of amorphous boron nitride at high pressures and temperatures, Scr. Mater. 52 (2005), pp. 537–540.10.1016/j.scriptamat.2004.10.016
  • V.L. Solozhenko and E.G. Solozhenko, Equation of state of turbostratic boron nitride, High Press. Res. 21 (2001), pp. 115–120.10.1080/08957950108201009
  • V.L. Solozhenko, O.O. Kurakevych, and Y.L. Le Godec, Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride, Adv. Mater. 24 (2012), pp. 1540–1544.10.1002/adma.201104361
  • V.L. Solozhenko and O.O. Kurakevych, Reversible pressure-induced structure changes in turbostratic BN–C solid solutions, Acta Crystallogr. B 61 (2005), pp. 498–503.
  • V.L. Solozhenko, O.O. Kurakevych, and A.Y. Kuznetsov, Raman scattering from turbostratic graphitelike BC4 under pressure, J. Appl. Phys. 102 (2007), pp. 063509–063513.
  • T. Kobayashi, S. Tashiro, T. Sekine, and T. Sato, Phase transformation of turbostratic BN by shock compression, Chem. Mater. 9 (1997), pp. 233–236.10.1021/cm960304d
  • M.C. Wilding, M. Wilson, and P.F. McMillan, Structural studies and polymorphism in amorphous solids and liquids at high pressure, Chem. Soc. Rev. 35 (2006), pp. 964–986.10.1039/b517775h
  • A.R. Yavari, Metallic glasses: The changing faces of disorder, Nat. Mater. 6 (2007), pp. 181–182.
  • P. Ordejón, E. Artacho, and J.M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 53 (1996), pp. R10441–R10444.10.1103/PhysRevB.53.R10441
  • M. Durandurdu, Hexagonal nanosheets in amorphous BN: A first principles study, J. Non-Cryst. Solids. 427 (2015), pp. 41–45.10.1016/j.jnoncrysol.2015.07.033
  • R. Zedlitz, M. Heintze, and M.B. Schubert, Properties of amorphous boron nitride thin films, J. Non-Cryst. Solids. 198 (1996), pp. 403–406.
  • J.Y. Huang, H. Yasuda, and H. Mori, HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling, J. Am. Ceram. Soc. 83 (2000), pp. 403–409.
  • N. Troullier and J.M. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991), pp. 1993–2006.10.1103/PhysRevB.43.1993
  • A.D. Becke, Density-functional exchange energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), pp. 3098–3100.10.1103/PhysRevA.38.3098
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), pp. 785–789.10.1103/PhysRevB.37.785
  • M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (1981), pp. 7182–7190.10.1063/1.328693
  • Y.K. Park, Molecular-dynamics study of defect formation in hydrogenated amorphous silicon, Ph.D. diss., Texas Tech University, Lubbock, TX, 1994.
  • C.W. Myles, B.C. Ha, and Y.K. Park, Large supercell molecular dynamics study of defect formation in hydrogenated amorphous silicon, J. Phys. Chem. Solids 63 (2002), pp. 1691–1698.10.1016/S0022-3697(01)00255-4
  • Siesta manual (3.2) p. 85, http://departments.icmab.es/leem/siesta/Documentation/Manuals
  • H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • S. Le Roux and V. Petkov, ISAACS-interactive structure analysis of amorphous and crystalline systems, J. Appl. Crystallogr. 43 (2010), pp. 81–85.
  • K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011), pp. 1272–1276.
  • Y. Kumashiro (ed.), Electric Refractory Materials, Taylor & Francis, New York, NY, 2000.
  • H.S. Wu, X. Hong Xu, F.Q. Zhang, and H. Jiao, New boron nitride B24N24 nanotube, J. Phys. Chem. A 107 (2003), pp. 6609–6612.
  • H.-S. Wu and H. Jiao, What is the most stable B24N24 fullerene?, Chem. Phys. Lett. 386 (2004), pp. 369–372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.