329
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation on the non-ideal behaviour of Au/n-InP Schottky diodes by the simulation of IVT and CVT characteristics

, , &
Pages 2009-2026 | Received 11 Jan 2016, Accepted 27 Apr 2016, Published online: 26 May 2016

References

  • R.T. Tung, Recent advances in Schottky barrier concepts, Mater. Sci. Eng.: R: Rep. 35 (2001), pp. 1–138.10.1016/S0927-796X(01)00037-7
  • E.H. Rhoderick and R.H. Williams, Metal-semiconductor Contacts, 2nd ed., Clarendon, Oxford, 1988.
  • S.M. Sze, Physics of Semiconductor Devices, 3rd ed., Wiley, New Jersey, NJ, 2007.
  • A. Neamen Donald, Semiconductor Physics and Devices, Irwin, Boston, MA, 1992.
  • C.W. Wilmsen, Physics and Chemistry of III–V Compound Semiconductor Interfaces, Plenum, New York, 1985.10.1007/978-1-4684-4835-1
  • P.H. Holloway and G.E. McGuire, Handbook of Compound Semiconductors: Growth, Processing, Characterization, and Devices, Noyes, New Jersey, NJ, 1995.
  • D. Korucu and T.S. Mammadov, Temperature-dependent current-conduction mechanisms in Au/n-InP Schottky barrier diodes (SBDs), J. Optoelectron. Adv. Mater. 14 (2012), pp. 41–48.
  • H. Çetin and E. Ayyıldız, Electrical characteristics of Au, Al, Cu/n-InP Schottky contacts formed on chemically cleaned and air-exposed n-InP surface, Physica B 394 (2007), pp. 93–99.10.1016/j.physb.2007.02.013
  • H. Çetin and E. Ayyildiz, The electrical properties of metal-oxide-semiconductor devices fabricated on the chemically etched n-InP substrate, Appl. Surf. Sci. 253 (2007), pp. 5961–5966.10.1016/j.apsusc.2006.12.110
  • R.T. Tung, The physics and chemistry of the Schottky barrier height, Appl. Phys. Rev. 1 (2014), pp. 1–54.
  • F.E. Cimilli, H. Efeoğlu, M. Sağlam, and A. Türüt, Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes, J. Mater. Sci.: Mater. Electron. 20 (2009), pp. 105–112.10.1007/s10854-008-9635-z
  • F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt, Temperature-dependent current–voltage characteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height, Physica B 404 (2009), pp. 1558–1562.10.1016/j.physb.2009.01.018
  • M. Soylu and B. Abay, Barrier characteristics of gold Schottky contacts on moderately doped n-InP based on temperature dependent I–V and C–V measurements, Microelectron. Eng. 86 (2009), pp. 88–95.10.1016/j.mee.2008.09.045
  • V. Janardhanam, A. Ashok Kumar, V. Rajagopal Reddy, and P. Narasimha Reddy, Study of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (100), J. Alloys Compd. 485 (2009), pp. 467–472.10.1016/j.jallcom.2009.05.141
  • S. Shankar Naik and V. Rajagopal Reddy, Analysis of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of Ni/Au Schottky contacts on n-type InP, Superlattices Microstruct. 48 (2010), pp. 330–342.10.1016/j.spmi.2010.06.019
  • K. Ejderha, N. Yıldırım, B. Abay, and A. Turut, Examination by interfacial layer and inhomogeneous barrier height model of temperature-dependent I–V characteristics in Co/p-InP contacts, J. Alloys Compd. 484 (2009), pp. 870–876.10.1016/j.jallcom.2009.05.062
  • S. Parui, A. Atxabal, M. Ribeiro, A. Bedoya-Pinto, X. Sun, R. Llopis, F. Casanova, and L.E. Hueso, Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy, Appl. Phys. Lett. 107 (2015), pp. 1–5.10.1063/1.4934885
  • R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory, Phys. Rev. B 45 (1992), pp. 13509–13523.10.1103/PhysRevB.45.13509
  • J.H. Werner and H.H. Güttler, Barrier inhomogeneities at Schottky contacts, J. Appl. Phys. 69 (1991), pp. 1522–1533.10.1063/1.347243
  • P. Chattopadhyay and S. Sanyal, Capacitance–voltage characteristics of Schottky barrier diode in the presence of deep-level impurities and series resistance, Appl. Surf. Sci. 89 (1995), pp. 205–209.10.1016/0169-4332(95)00020-8
  • A. Singh and L. VelSsquez, Devices, circuits and systems, First IEEE International Conference, Caracas, 1995, pp. 70–74.
  • A.G. Milnes and D.L. Feucht, Heterojunctions and Metal-semiconductor Junctions, Academic, New York, 1972.
  • Y.A. Makhalov and R.L. Melik-Davtyan, Thermoelectric power in semiconducting alloys, Sov. Phys. Solid State 11 (1970), pp. 883–889.
  • A. Paul, Anders, work function of gold, Phys. Rev. 115 (1959), pp. 553–554.
  • H. Kawano, Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces, Prog. Surf. Sci. 83 (2008), pp. 1–165.10.1016/j.progsurf.2007.11.001
  • Z. Hang, H. Shen, and F.H. Pollak, Temperature dependence of the Eo and Eo + △o gaps of InP up to 600°C, Solid State Commun. 73 (1990), pp. 15–18.10.1016/0038-1098(90)90005-V
  • Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34 (1967), pp. 49–154.
  • SILVACO-TCAD, ATLAS User’s Manual: Device Simulation Software, SILVACO International, Santa Clara, CA, 2013.
  • M. Sotoodeh, A.H. Khalid, and A.A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes, J. Appl. Phys. 87 (2000), pp. 2890–2900.10.1063/1.372274
  • Available at http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/index.html [accessed 15.02.2015].
  • R.N. Hall, Electron-hole recombination in germanium, Phys. Rev. 87 (1952), p. 387.10.1103/PhysRev.87.387
  • J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31 (1977), pp. 346–348.10.1063/1.89694
  • G. Augustine, A. Rohatgi, and N.M. Jokerst, Base doping optimization for radiation-hard Si, GaAs, and InP solar cells, IEEE Trans. Electron Devices 39 (1992), pp. 2395–2400.10.1109/16.158814
  • F. Zappa, P. Lovati, and A. Lacaita, Temperature dependence of electron and hole ionization coefficients in InP, IPRM ‘96, Eighth International Conference, Schwabisch Gmund, Germany, April 21–25, 1996, pp. 628–631.
  • K.B. Wolfstirn, Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements, J. Phys. Chem. Solids 16 (1960), pp. 279–284.10.1016/0022-3697(60)90157-8
  • C.R. Crowell and S.M. Sze, Current transport in metal–semiconductor barriers, Solid-State Electron. 9 (1966), pp. 1035–1048.10.1016/0038-1101(66)90127-4
  • M. Ieong, P.M. Solomon, S.E. Laux, H.-S.P. Wong, and D. Chidambarrao, Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model, IEDM’98. Technical Digest, San Francisco, CA, December 6–9, 1998, p. 733.
  • L.F. Wagner, R.W. Young, and A. Sugerman, A note on the correlation between the Schottky-diode barrier height and the ideality factor as determined from I-V measurements, IEEE Electron Device Lett. 4 (1983), pp. 320–322.10.1109/EDL.1983.25748
  • Ş. Aydoğan, M. Sağlam, and A. Türüt, On the barrier inhomogeneities of polyaniline/p-Si/Al structure at low temperature, Appl. Surf. Sci. 250 (2005), pp. 43–49.10.1016/j.apsusc.2004.12.020
  • H. Çetin, E. Ayyildiz, and A. Türüt, Barrier height enhancement and stability of the Au∕n-InP Schottky barrier diodes oxidized by absorbed water vapor, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 23 (2005), pp. 2436–2443.10.1116/1.2126675
  • E. Özavcı, S. Demirezen, U. Aydemir, and Ş. Altındal, A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range, Sens. Actuators, A 194 (2013), pp. 259–268.10.1016/j.sna.2013.02.018
  • B.H. Hu, B.L. Zhou, and Z.X. Chen, Deep levels in n-InP, J. Lumin. 40–41 (1988), pp. 371–372.10.1016/0022-2313(88)90238-4
  • A.M. White, Deep traps in ideal n-InP Schottky diodes, Electron. Lett. 14 (1978), pp. 409–411.10.1049/el:19780276
  • Y. Sakamoto, T. Sugino, H. Ninomiya, K. Matsuda, and J. Shirafuji, Deep electron traps in n-InP induced by plasma exposure, Jpn. J. Appl. Phys. 34 (1995), pp. 5499–5504.10.1143/JJAP.34.5499
  • Ş. Altındal, İ. Dökme, M.M. Bülbül, N. Yalçın, and T. Serin, The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range, Microelectron. Eng. 83 (2006), pp. 499–505.10.1016/j.mee.2005.11.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.