283
Views
11
CrossRef citations to date
0
Altmetric
TSCITM

Momentum microscopy of single crystals with detailed surface characterisation

, , &
Pages 3284-3306 | Received 30 Jan 2016, Accepted 27 Apr 2016, Published online: 25 May 2016

References

  • R.L. Cohen, M. Eibschütz, and K.W. West, Electronic and magnetic structure of SmB6, Phys. Rev. Lett. 24 (1970), pp. 383–386.
  • A. Yanase and H. Harima, Band calculations on, YbB12, SmB6 and CeNiSn, Prog. Theor. Phys. Suppl. 108 (1992), pp. 19–25.
  • T. Kasuya, Physical mechanism in kondo insulator, J. Phys. Soc. Jpn. 65 (1996), pp. 2548–2558.
  • P.S. Riseborough, Magnetic bound states in SmB6, Ann. Phys. 9 (2000), pp. 813–820.
  • S. Gabáni, K. Flachbart, E. Konovalova, M. Orendáč, Y. Paderno, V. Pavlík, and J. Šebek, Properties of the in-gap states in SmB6, Solid State Commun. 117 (2001), pp. 641–644.
  • V.N. Antonov, B.N. Harmon, and A.N. Yaresko, Electronic structure of mixed-valence semiconductors in the LSDA+U approximation. II. SmB6 and YbB12, Phys. Rev. B. 66 (2002), pp. 165209–1–165209–9.
  • M. Aono, S. Kawai, S. Kono, M. Okusawa, T. Sagawa, and Y. Takehana, ESCA study of electronic structure of SmB6, Solid State Commun. 16 (1975), pp. 13–17.
  • S. Nozawa, T. Tsukamoto, K. Kanai, T. Haruna, S. Shin, and S. Kunii, Ultrahigh-resolution and angle-resolved photoemission study of SmB6, J. Phys. Chem. Solids. 63 (2002), pp. 1223–1226.
  • W. Ruan, C. Ye, M. Guo, F. Chen, X. Chen, G.M. Zhang, and Y. Wang, Emergence of a coherent in-gap state in the SmB6 kondo insulator revealed by scanning tunneling spectroscopy, Phys. Rev. Lett. 112 (2014), pp. 136401–1–136401–5.
  • H. Miyazaki, T. Hajiri, T. Ito, S. Kunii, and S.I. Kimura, Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6, Phys. Rev. B. 86 (2012), pp. 075105–1–075105–4.
  • J. Yamaguchi, A. Sekiyama, M.Y. Kimura, H. Sugiyama, Y. Tomida, G. Komori, S. Kimura, T. Balashov, W. Wulfhekel, T. Ito, S. Kimura, A. Higashiya, K. Tamasaku, M. Yabashi, T. Ishikawa, S. Yeo, S.I. Lee, F. Iga, T. Takabatake, and S. Suga, Different evolution of the intrinsic gap in strongly correlated SmB6 in contrast to SmB6, New J. Phys. 15 (2013), pp. 043042–1–043042–12.
  • J.D. Denlinger, J.W. Allen, J.S. Kang, K. Sun, B.I. Min, D.J. Kim, and Z. Fisk, SmB6 photoemission: Past and present (2013), pp. 1–10. ArXiv e-prints 1312.6636.
  • J.D. Denlinger, J.W. Allen, J.S. Kang, K. Sun, J.W. Kim, J.H. Shim, B.I. Min, D.J. Kim, and Z. Fisk, Temperature dependence of linked gap and surface state evolution in the mixed valent topological insulator SmB6 (2013), pp. 1–16. ArXiv e-prints 1312.6637.
  • Z.H. Zhu, A. Nicolaou, G. Levy, N.P. Butch, P. Syers, X.F. Wang, J. Paglione, G.A. Sawatzky, I.S. Elfimov, and A. Damascelli, Polarity-driven surface metallicity in SmB6, Phys. Rev. Lett. 111 (2013), pp. 216402–1–216402–5.
  • M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104 (2010), pp. 106408–1–106408–4.
  • T. Takimoto, SmB6: A promising candidate for a topological insulator, J. Phys. Soc. Jpn. 80 (2011), pp. 123710–1–123710–4.
  • N. Xu, X. Shi, P.K. Biswas, C.E. Matt, R.S. Dhaka, Y. Huang, N.C. Plumb, M. Radovi\’c, J.H. Dil, E. Pomjakushina, K. Conder, A. Amato, Z. Salman, D.M. Paul, J. Mesot, H. Ding, and M. Shi, Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator, Phys. Rev. B. 88 (2013), pp. 121102–1–121102–5.
  • M. Neupane, N. Alidoust, S.Y. Xu, T. Kondo, Y. Ishida, D.J. Kim, C. Liu, I. Belopolski, Y.J. Jo, T.R. Chang, H.T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M.Z. Hasan, Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6, Nat. Commun. 4 (2013), pp. 2991–1–2991–7.
  • E. Frantzeskakis, N. de Jong, B. Zwartsenberg, Y.K. Huang, Y. Pan, X. Zhang, J.X. Zhang, F.X. Zhang, L.H. Bao, O. Tegus, A. Varykhalov, A. de Visser, and M.S. Golden, Kondo hybridization and the origin of metallic states at the (001) surface of SmB6, Phys. Rev. X. 3 (2013), pp. 041024–1–041024–11.
  • J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z.R. Ye, M. Xu, Q.Q. Ge, S.Y. Tan, X.H. Niu, M. Xia, B.P. Xie, Y.F. Li, X.H. Chen, H.H. Wen, and D.L. Feng, Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission, Nat. Commun. 4 (2013), pp. 3010–1–3010–8.
  • S. Suga, K. Sakamoto, T. Okuda, K. Miyamoto, K. Kuroda, A. Sekiyama, J. Yamaguchi, H. Fujiwara, A. Irizawa, T. Ito, S. Kimura, T. Balashov, W. Wulfhekel, S. Yeo, F. Iga, and S. Imada, Spin-polarized angle-resolved photoelectron spectroscopy of the so-predicted Kondo topological insulator SmB6, J. Phys. Soc. Jpn. 83 (2014), pp. 014705–1–014705–6.
  • N. Xu, C.E. Matt, E. Pomjakushina, X. Shi, R.S. Dhaka, N.C. Plumb, M. Radovi\’{c}, P.K. Biswas, D. Evtushinsky, V. Zabolotnyy, J.H. Dil, K. Conder, H. Ding, P.K. Biswas, D. Evtushinsky, V. Zabolotnyy, J.H. Dil, K. Conder, J. Mesot, H. Ding, and M. Shi, Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES, Phys. Rev. B. 90 (2014), pp. 085148–1–085148–6.
  • N. Xu, P.K. Biswas, J.H. Dil, R.S. Dhaka, G. Landolt, S. Muff, C.E. Matt, X. Shi, N.C. Plumb, M. Radovi\’{c}, E. Pomjakushina, K. Conder, A. Amato, S.V. Borisenko, R. Yu, H.M. Weng, Z. Fang, X. Dai, J. Mesot, H. Ding, and M. Shi, Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator, Nat. Commun. 5 (2014), pp. 4566–1–4566–5.
  • J. Kim, K. Kim, C.J. Kang, S. Kim, H.C. Choi, J.S. Kang, J.D. Denlinger, and B.I. Min, Termination-dependent surface in-gap states in a potential mixed-valent topological insulator: SmB6, Phys. Rev. B. 90 (2014), pp. 075131–1–075131–6.
  • T.R. Chang, T. Das, P.J. Chen, M. Neupane, S.Y. Xu, M.Z. Hasan, H. Lin, H.T. Jeng, and A. Bansil, Two distinct topological phases in the mixed-valence compound YbB6 and its differences from SmB6, Phys. Rev. B. 91 (2015), pp. 155151–1–155151–6.
  • W. Färber and P. Braun, Oxygen exposure of Sm, Gd and Tb studied by Auger electron spectroscopy, Surf. Sci. 41 (1974), pp. 195–204.
  • R. Nishitani, C. Oshima, M. Aono, T. Tanaka, S. Kawai, H. Iwasaki, and S. Nakamura, Oxygen adsorption on the LaB6 (100), (110) and (111) surfaces, Surf Sci. 115 (1982), pp. 48–60.
  • F. Lofink, S. Hankemeier, R. Frömter, J. Kirschner, and H.P. Oepen, Long-time stability of a low-energy electron diffraction spin polarization analyzer for magnetic imaging, Rev. Sci. Instrum. 83 (2012), pp. 023708–1–023708–5.
  • P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. S\’{a}nchez-Barriga, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, S. Gab\’{a}ni, K. Flachbart, O. Rader, and E.D.L. Rienks, Samarium hexaboride: A trivial surface conductor, (2015), pp. 1–10. ArXiv e-prints 1502.01542.
  • C. Tusche, A. Krasyuk, and J. Kirschner, Spin resolved bandstructure imaging with a high resolution momentum microscope, Ultramicroscopy. 159 (2015), pp. 520–529.
  • G.D. Sturgeon, J.P. Mercurio, J. Etourneau, and P. Hagenmuller, Single crystals of SmB6 for conductivity and other measurements, Mater. Res. Bull. 9 (1974), pp. 117–119.
  • P.H. Keck, M. Green, and M.L. Polk, Shapes of floating liquid zones between solid rods, J. Appl. Phys. 24 (1953), pp. 1479–1481.
  • M.C. Hatnean, M.R. Lees, D.M. Paul, and G. Balakrishnan, Large, high quality single-crystals of the new topological Kondo insulator SmB6, Sci. Rep. 3 (2013), pp. 3071–1–3071–4.
  • T.B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak (eds.), Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials City, Ohio, 1990.
  • F. Iga, N. Shimizu, and T. Takabatake, Single crystal growth and physical properties of kondo insulator YbB12, J. Magn. Magn. Mater. 177 (1998), pp. 337–338.
  • D.J. Kim, J. Xia, and Z. Fisk, Topological surface state in the Kondo insulator samarium hexaboride, Nat. Mater. 13 (2014), pp. 466–470.
  • J.S. Hwang, K.J. Lin, and C. Tien, Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter, Rev. Sci. Instrum. 68 (1997), pp. 94–101.
  • S.V. Molnar, T. Theis, A. Benoit, A. Briggs, J. Flouquet, J. Ravex, and Z. Fisk, Study of the Energy Gap in Single Crystal SmB6, in International Conference on Valence Instabilities, P. Wachter and H. Boppart,eds., North-Holland, Netherlands, 1982, pp. 389–395.
  • T. Kasuya, K. Takegahara, T. Fujita, T. Tanaka, and E. Bannai, Valence fluctuating state in SmB6, J. Phys. Colloques. 40 (1979), pp. C5/308–C5/313.
  • G.V. Samsonov, Y.B. Paderno, and V.S. Fomenko, Hexaborides of the rare-earth metals, Sov. Powder Metall. Metal Ceramics. 2 (1963), pp. 449–454.
  • B. Müller and U. Renz, Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities, Rev. Sci. Instrum. 72 (2001), pp. 3366–3374.
  • S.V. Ramankutty, N. de Jong, Y.K. Huang, B. Zwartsenberg, F. Massee, T.V. Bay, M.S. Golden, and E. Frantzeskakis, Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission (2015), pp. 1–10. ArXiv e-prints 1506.05997.
  • M. Aono, R. Nishitani, C. Oshima, T. Tanaka, E. Bannai, and S. Kawai, LaB6 and SmB6 (001) surfaces studied by angle-resolved XPS LEED and ISS, Surf. Sci. 86 (1979), pp. 631–637.
  • M. Aono, C. Oshima, T. Tanaka, E. Bannai, and S. Kawai, Structure of the LaB6 (001) surface studied by angle-resolved XPS and LEED, J. Appl. Phys. 49 (1978), pp. 2761–2764.
  • A. Menth, E. Buehler, and T.H. Geballe, Magnetic and semiconducting properties of SmB6, Phys. Rev. Lett. 22 (1969), pp. 295–297.
  • P. Heimann, H. Neddermeyer, and H.F. Roloff, Ultraviolet photoemission for intrinsic surface states of the noble metals, J. Phys. C: Solid State Phys. 10 (1977), pp. L17–L22.
  • L. Swanson and D. McNeely, Work functions of the (001) face of the hexaborides of Ba, La, Ce, and Sm, Surf. Sci. 83 (1979), pp. 11–28.
  • E. Storms and B. Mueller, Phase relationship, vaporization, and thermodynamic properties of the lanthanum-boron system, J. Phys. Chem. 82 (1978), pp. 51–59.
  • A. Oelsner, G. Fecher, M. Schicketanz, and G. Schönhense, Determining the optical properties of adsorbate covered surfaces by dichroism in VUV-photoemission, Surf. Sci. 433 (1999), pp. 53–57.
  • A. Winkelmann, C. Tusche, A.A. Ünal, M. Ellguth, J. Henk, and J. Kirschner, Analysis of the electronic structure of copper via two-dimensional photoelectron momentum distribution patterns, New J. Phys. 14 (2012), pp. 043009–1–043009–18.
  • J. Denlinger, G.H. Gweon, J. Allen, C. Olson, Y. Dalichaouch, B.W. Lee, M. Maple, Z. Fisk, P. Canfield, and P. Armstrong, Advances in photoemission spectroscopy of f-electron materials, Phys. B: Condens. Matter. 281–282 (2000), pp. 716–722.
  • J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B. 45 (1992), pp. 13244–13249.
  • All-electron full-potential linearised augmented-plane wave (FP-LAPW) code. Available at http://elk.sourceforge.net/.
  • M. Trenary, Surface science studies of metal hexaborides, Sci. Technol. Adv. Mater. 13 (2012), pp. 023002–1–023002–12.
  • W. Waldhauser, C. Mitterer, J. Laimer, and H. Störi, Sputtered thermionic hexaboride coatings, Surf. Coatings Technol. 98 (1998), pp. 1315–1323.
  • D.E. Eastman, Photoelectric work functions of transition, rare-earth, and noble metals, Phys. Rev. B. 2 (1970), pp. 1–2.
  • S. Souma, H. Kumigashira, T. Ito, T. Takahashi, and S. Kunii, Direct observation of pseudogap of SmB6 using ultrahigh-resolution photoemission spectroscopy, Phys. B: Condens. Matter. 312–313 (2002), pp. 329–330.
  • S.K. Mo, G.H. Gweon, J. Denlinger, H.D. Kim, J. Allen, C. Olson, H. Höchst, J. Sarrao, and Z. Fisk, ARPES study of x-point band overlaps in LaB6 and SmB6 - contrast to SrB6 and EuB6, Phys. B: Condens. Matter. 312–313 (2002), pp. 668–669.
  • G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y.S. Eo, D.J. Kim, C. Kurdak, J.W. Allen, K. Sun, X.H. Chen, Y.Y. Wang, Z. Fisk, and L. Li, Two-dimensional fermi surfaces in Kondo insulator SmB6, Science. 346 (2014), pp. 1208–1212.
  • D.J. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and J. Xia, Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction, Sci. Rep. 3 (2013), pp. 3150–1–3150–4.
  • N. Sluchanko, A. Volkov, V. Glushkov, B. Gorshunov, S. Demishev, M. Kondrin, A. Pronin, N. Samarin, Y. Bruynseraede, V. Moshchalkov, and S. Kunii, Nature of the low-temperature anomalies in the physical properties of the intermediate-valent compound SmB6, J. Exp. Theor. Phys. 88 (1999), pp. 533–537.
  • F. Lu, J. Zhao, H. Weng, Z. Fang, and X. Dai, Correlated topological insulators with mixed valence, Phys. Rev. Lett. 110 (2013), pp. 096401–1–096401–5.
  • C.J. Kang, J. Kim, K. Kim, J. Kang, J.D. Denlinger, and B.I. Min, Band symmetries of mixed-valence topological insulator: SmB6, J. Phys. Soc. Jpn. 84 (2015), pp. 024722–1–024722–7.
  • S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer Series in Surface Sciences, Vol. 49, Springer-Verlag, Berlin Heidelberg, 2013.
  • A.R. DuCharme and R.L. Gerlach, The role of Coster-Kronig transitions in the ionization of surface atoms, J. Vacuum Sci. Technol. 11 (1974), pp. 281–283.
  • M.P. Seah and I.S. Gilmore, Quantitative AES. VIII: analysis of Auger electron intensities from elemental data in a digital Auger database, Surf. Interface Anal. 26 (1998), pp. 908–929.
  • L.E. Davis, Handbook of Auger Electron Spectroscopy: A Reference Book of Standard Data for Identification and Interpretation of Auger Electron Spectroscopy Data, 2nd ed., Physical Electronics, Chanhassen, 1978.
  • M.P. Seah and W.A. Dench, Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1 (1979), pp. 2–11.
  • C.J. Powell and A. Jablonski, NIST electron effective-attenuation-length database, Version 1.3, SRD 82, National Institute of Standards and Technology, Gaithersburg, MD.
  • A. Jablonski and C. Powell, The electron attenuation length revisited, Surf. Sci. Rep. 47 (2002), pp. 33–91.
  • S. Tanuma, C.J. Powell, and D.R. Penn, Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range, Surf. Interface Anal. 43 (2011), pp. 689–713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.