1,165
Views
17
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles investigation of LaGaO3 and LaInO3 lanthanum perovskite oxides

, , , &
Pages 2040-2058 | Received 18 Jan 2016, Accepted 06 May 2016, Published online: 30 May 2016

References

  • P.M. Woodward, Octahedral tilting in perovskites. 1. Geometrical considerations, Acta Cryst. B 53 (1997), pp. 32–43.10.1107/S0108768196010713
  • M. Marezio, J.P. Remeika, and P.D. Dernier, The crystal chemistry of the rare earth orthoferrites, Acta Cryst. B 26 (1970), pp. 2008–2022.10.1107/S0567740870005319
  • M. Itoh and Y. Hinatsu, Crystal structures and magnetic properties of Ba1-ySryPrO3 (0 ≤ y ≤ 1.0), J. Alloys Compd. 264 (1998), pp. 119–124.10.1016/S0925-8388(97)00241-7
  • T. Wolfram and Ş. Ellialtioglu, Electronic and Optical Properties of D -Band Perovskites, Cambridge, 2006.10.1017/CBO9780511541292
  • K.A. Müller, Th. von Waldkirch, W. Berlinger, and B.W. Faughnan, Photochromic Fe5+(3d3) in SrTiO3 evidence from paramagnetic resonance, Solid State Commun. 9 (1971), pp. 1097–1101.10.1016/0038-1098(71)90470-4
  • S. Kamimura, H. Yamada, and X. Chao-Nan, Purple photochromism in Sr2SnO4:Eu3+ with layered perovskite-related structure, Appl. Phys. Lett. 102 (2013), pp. 031110–031114.10.1063/1.4788752
  • C.G. Granqvist, Electrochromic tungsten oxide films: Review of progress 1993–1998, Sol. Energy Mater. Sol. Cells 60 (2000), pp. 201–262.10.1016/S0927-0248(99)00088-4
  • M.C. Rao, Structure and properties of WO3 thin films for electrochromic device application, J. Non-Oxide Glasses 5 (2013), pp. 1–8.
  • V. Busico, C. Carfagna, V. Salerno, M. Vacatello, and F. Fittipaldi, The layer perovskites as thermal energy storage systems, Solar Energy 24 (1980), pp. 575–579.10.1016/0038-092X(80)90356-4
  • C. Liu, F. Li, M. Lai-Peng, and C. Hui-Ming, Advanced materials for energy storage, Adv. Mater. 22 (2010), pp. E28–E62.10.1002/adma.v22:8
  • C.D. Chandler, C. Roger, and M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors, Chem. Rev. 93 (1993), pp. 1205–1241.10.1021/cr00019a015
  • N.A. Hill, Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B 104 (2000), pp. 6694–6709.10.1021/jp000114x
  • M. Dawber, K.M. Rabe, and J.F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77 (2005), pp. 1083–1130.10.1103/RevModPhys.77.1083
  • D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61 (1998), pp. 1267–1324.10.1088/0034-4885/61/9/002
  • A.J. Millis, Lattice effects in magnetoresistive manganese perovskites, Nature 392 (1998), pp. 147–150.10.1038/32348
  • S. Sato, R. Takahashi, M. Kobune, and H. Gotoh, Basic properties of rare earth oxides, Appl. Catal. A-Gen. 356 (2009), pp. 57–63.10.1016/j.apcata.2008.12.019
  • Y-F.Y. Yao, The oxidation of hydrocarbons and CO over metal oxides: IV. Perovskite-type oxides. J. Catal. 36 (1975), pp. 266–275, .10.1016/0021-9517(75)90036-6
  • G.N. Pirogova, R.I. Korosteleva, N.M. Panich, T.A. Lagutina, Y.V. Voronin, Catalytic oxidation of CO, hydrocarbons, and ethyl acetate over perovskite-type complex oxides. Russ. Chem. Bull. 43 (1994), pp. 551–554, .10.1007/BF00699821
  • T. Harada, Y. Teraoka, and S. Kagawa, Perovskite-type oxides as catalysts for selective reduction of nitric oxide by ethylene, Appl. Surf. Sci. 121–122 (1997), pp. 505–508.10.1016/S0169-4332(97)00354-1
  • K.K. Hansen, Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites, Mater. Res. Bull. 45 (2010), pp. 1334–1337.10.1016/j.materresbull.2010.05.009
  • J.G. Mavroides, J.A. Kafalas, and D.F. Kolesar, Photoelectrolysis of water in cells with SrTiO3 anodes, Appl. Phys. Lett. 28 (1976), pp. 241–243.10.1063/1.88723
  • J. Shi and L. Guo, ABO3-based photocatalysts for water splitting, Prog. Nat. Sci. 22 (2012), pp. 592–615.10.1016/j.pnsc.2012.12.002
  • B. Yıldız, D.J. Myers, J.D. Carter, K.C. Chang, and H. You, In situ X-ray and electrochemical studies of solid oxide fuel cell/electrolyzer oxygen electrodes, Adv. Solid Oxise Fuel Cells III: Ceram. Eng. Sci. Proc. 28 (2008), pp. 153–164.
  • M. Nieminen, S. Lehto, and L. Niinistö, Atomic layer epitaxy growth of LaGaO3 thin films, J. Mater. Chem. 11 (2001), pp. 3148–3153; and the references therein.10.1039/b105978p
  • T. Ishihara, H. Matsuda, and Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc. 116 (1994), pp. 3801–3803.10.1021/ja00088a016
  • H. Boysen, M. Lerch, R. Gilles, B. Krimmer, and D.M. Többens, Structure and ionic conductivity in doped LaGaO3, Appl. Phys. A 74 (2002), pp. S966–S968.10.1007/s003390101168
  • H. He, X. Huang, and L. Chen, Sr-doped LaInO3 and its possible application in a single layer SOFC, Solid State Ionics 130 (2000), pp. 183–193.10.1016/S0167-2738(00)00666-4
  • D. Lybye, F.W. Poulsen, and M. Mogensen, Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites, Solid State Ionics 128 (2000), pp. 91–103.10.1016/S0167-2738(99)00337-9
  • U. Kim, C. Park, T. Ha, Y.m. Kim, N. Kim, C. Ju, J. Park, J. Yu, J.H. Kim, and K. Char, All-perovskite transparent high mobility field effect using epitaxial BaSnO3 and LaInO3, APL Mater. 3 (2015), pp. 036101-(1–7).
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138.10.1103/PhysRev.140.A1133
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964), pp. B864–B871.10.1103/PhysRev.136.B864
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1994), pp. 558–561.
  • G. Kresse and J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6 (1996), pp. 15–50.10.1016/0927-0256(96)00008-0
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57 (1998), pp. 1505–1509.10.1103/PhysRevB.57.1505
  • V.M. Goldschmidt, Die Gesetze der Krystallochemie [The laws of crystal chemistry], Die Naturwissenschaften 14 (1926), pp. 477–485.10.1007/BF01507527
  • H. Kronmüller and S. Parkin (eds.), Handbook of Magnetism and Advanced Magnetic Materials Vol. 4 Novel Materials, John Wiley and Sons Ltd, Chichester, 2007.10.1002/9780470022184
  • R.H. Buttner and E.N. Maslen, Structural parameters and electron difference density in BaTiO3, Acta Crystallogr. B 48 (1992), pp. 764–769.10.1107/S010876819200510X
  • J. Feng, B. Xiao, J.C. Chen, and C.T. Zhou, Theoretical study on the stability and electronic property of Ag2SnO3, Solid State Sci. 11 (2009), pp. 259–264.10.1016/j.solidstatesciences.2008.04.015
  • S.F. Matar, R. Weihrich, D. Kurowski, and A. Pfitzner, DFT calculations on the electronic structure of CuTe2 and Cu7Te4, Solid State Sci. 6 (2004), pp. 15–20.10.1016/j.solidstatesciences.2003.09.012
  • E. Zhao and Z. Wu, Electronic and mechanical properties of 5d transition metal mononitrides via first-principles, J. Solid State Chem. 181 (2008), pp. 2814–2827.10.1016/j.jssc.2008.07.022
  • R.E. Cohen, O. Gülseren, and R.J. Hemley, Accuracy of equation-of-state formulations, Am. Mineral. 85 (2000), pp. 338–344.10.2138/am-2000-2-312
  • P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, Universal features of the equation of state of solids, J. Phys. Condens. Matter 1 (1989), pp. 1941–1963.10.1088/0953-8984/1/11/002
  • P. Vinet, J. Ferrante, J.H. Rose, and J.R. Smith, Compressibility of solids, J. Geophys. Res. 92 (1987), pp. 9319–9325.10.1029/JB092iB09p09319
  • A.S. Verma and V.K. Jindal, Lattice constant of cubic perovskites, J. Alloys Compd. 485 (2009), pp. 514–518.10.1016/j.jallcom.2009.06.001
  • R.L. Moreira and A. Dias, Comment on “Prediction of lattice constant in cubic perovskites”. J. Phys. Chem. Solids 68 (2007), pp. 1617–1622.10.1016/j.jpcs.2007.03.050
  • L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, Prediction of lattice constant in cubic perovskites, J. Phys. Chem. Solids 67 (2006), pp. 1531–1536.10.1016/j.jpcs.2006.02.004
  • A.S. Verma and A. Kumar, Bulk modulus of cubic perovskites, J. Alloys Compd. 541 (2012), pp. 210–214.10.1016/j.jallcom.2012.07.027
  • R. Ubic and G. Subodh, The prediction of lattice constants in orthorhombic perovskites, J. Alloys Compd. 488 (2009), pp. 374–379.10.1016/j.jallcom.2009.08.139
  • A. Kumar and A.S. Verma, Lattice constant of orthorhomic perovskite solids, J. Alloys Compd. 480 (2009), pp. 650–657.10.1016/j.jallcom.2009.02.004
  • Y.L. Page and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys. Rev. B 63 (2001), pp. 174103.1–174103.8.
  • C. Li, B. Wang, R. Wang, H. Wang, and X. Lu, First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO3, Comput. Mater. Sci. 42 (2008), pp. 614–618.10.1016/j.commatsci.2007.09.008
  • W. Voigt, Lehrbuch der Kristallphysik [The textbook of crystal physics], B.G. Teubner, Leipzig und Berlin, 1928.
  • A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle [Calculation of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystals], J. Appl. Math. Mech. 9 (1929), pp. 49–58.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952), pp. 349–354.10.1088/0370-1298/65/5/307
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904.10.1063/1.368733
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations. J. Phys. Condens. Matter 20 (2008), pp. 415218.1–415218.9.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser. 45 (1954), pp. 823–843.10.1080/14786440808520496
  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1956.
  • I.R. Shein and A.L. Ivanovskii, Ab initio study of the elastic and electronic properties of tetragonal Th2NiC2, Inst. Solid State Chem. 1–8 (2012).
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi 1 (2007), pp. 89–91.
  • H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci. 44 (2008), pp. 774–778.10.1016/j.commatsci.2008.05.026
  • V. Tvergaard and J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc. 71 (1988), pp. 157–166.10.1111/jace.1988.71.issue-3
  • E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements, McGraw-Hill, New York, NY, 1973.
  • O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917.10.1016/0022-3697(63)90067-2
  • N.V. Smith, Photoelectron energy spectra and the band structures of the noble metals, Phys. Rev. B 3 (1971), pp. 1862–1878.10.1103/PhysRevB.3.1862
  • C. Ambrosch-Draxl and J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Comput. Phys. Commun. 175 (2006), pp. 1–14.10.1016/j.cpc.2006.03.005
  • M. Fox, Optical Properties of Solids, Oxford University Press, New York, NY, 2001.
  • F. Wooten, Optical Properties of Solids, Academic Press, New York, NY, 1972.
  • M. Maqbool, B. Amin, and I. Ahmad, Bandgap investigations and the effect of the In and Al concentration on the optical properties of InxAl1-xN, J. Opt. Soc. Am. B 26 (2009), pp. 2181–2184.10.1364/JOSAB.26.002181
  • M. Maqbool, M.E. Kordesch, and A. Kayani, Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd+3 for optical devices applications, J. Opt. Soc. Am. 26 (2009), pp. 998–1001.10.1364/JOSAB.26.000998
  • S.Zh. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, and B.G. Svensson, Electronic structure and optical properties of ZnX (X=O, S, Se, Te): A density functional study, Phys. Rev.B 75 (2007), pp. 155104.1–155104.14.10.1103/PhysRevB.75.155104
  • S. Loughin and R.H. French, L.K. De Noyer, W.Y. Ching, and Y.N. XU, Critical point analysis of the interband transition strength of electrons, J. Phys. D: Appl. Phys. 29 (1996), pp. 1740–1750. http://iopscience.iop.org/article/10.1088/0022-3727/29/7/009
  • G. Shwetha and V. Kanchana, Optical isotropy in structurally anisotropic halide scintillators: Ab initio study, Phys. Rev. B 86 (2012), pp. 115209.1–115209.8.
  • S. Azam and A.H. Reshak, Electronic Structure of 1,3-dicarbomethoxy4,6-benzenedicarboxylic acid: Density functional approach, Int. J. Electrochem. Sci. 8 (2013), pp. 10359–10375.
  • A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015), pp. 1–5.10.1016/j.scriptamat.2015.07.021
  • S. Baroni, P. Giannozzi, and A. Testa, Green’s-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987), pp. 1861–1864.10.1103/PhysRevLett.58.1861
  • X. Gonze and J.-P. Vigneron, Density-functional approach to nonlinear-response coefficients of solids, Phys. Rev. B 39 (1989), pp. 13120–13128.10.1103/PhysRevB.39.13120
  • X. Gonze, D.C. Allan, and M.P. Teter, Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory, Phys. Rev. Lett. 68 (1992), pp. 3603–3606.10.1103/PhysRevLett.68.3603

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.