368
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

T-ZrS nanoribbons: structure and electronic properties

, , , &
Pages 2074-2087 | Received 25 Jan 2016, Accepted 06 May 2016, Published online: 27 May 2016

References

  • C. Ataca, H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116(16) (2012), pp. 8983–8999.
  • Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012), pp. 699–712.
  • M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4) (2013), pp. 263–275.
  • G. Eda and S.A. Maier, Two-dimensional crystals: managing light for optoelectronics, ACS Nano 7(7) (2013), pp. 5660–5665.
  • H. Wang, L. Yu, Y.H. Lee, Y. Shi, M.L. Chin, L.J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9) (2012), pp. 4674–4680.
  • Y.J. Zhang, J.T. Ye, Y. Matsuhashi, and Y. Iwasa, Ambipolar MoS2 thin flake transistors, Nano Lett. 12(3) (2012), pp. 1136–1140.
  • H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts, Nano Lett. 12(7) (2012), pp. 3788–3792.
  • A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions, Phys. Rev. B 64 (2001), p. 205416 (14p).
  • A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermanna, Electronic properties of WS2 monolayer films, Thin Solid Films 380 (2000), pp. 221–223.
  • Q. Li, E.C. Walter, W.E. van der Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan, J.A. Switzer, J.C. Hemminger, and R.M. Penner, Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis, J. Phys. Chem. B 109(8) (2005), pp. 3169–3182.
  • Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, and R.M. Penner, Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbons by electrochemical/chemical synthesis, Nano Lett. 4(2) (2004), pp. 277–281.
  • Y. Li, S. Tongay, Q. Yue, J. Kang, J. Wu, and J. Li, Metal to semiconductor transition in metallic transition metal dichalcogenides, J. Appl. Phys. 114 (2013), p. 174307 (6p).
  • J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D.H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nature Nanotech. 9 (2014), pp. 268–272.
  • S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, and J.C. Grossman, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11) (2012), pp. 5576–5580.
  • S. Horzum, H. Sahin, S. Cahangirov, P. Cudazzo, A. Rubio, T. Serin, and F.M. Peeters, Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2, Phys. Rev. B 87 (2013), p. 125415 (5p).
  • H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F.M. Peeters, Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Phys, Rev. B 87 (2013), p. 165409 (6p).
  • S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, and J. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling, Nature Comm. 5 (2014), p. 3252 (6p).
  • S. Horzum, D. Cakir, J. Suh, S. Tongay, Y.S. Huang, C.H. Ho, J. Wu, H. Sahin, and F.M. Peeters, Formation and stability of point defects in monolayer rhenium disulfide, Phys. Rev. B 89 (2014), p. 155433 (7p).
  • M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, and P. Barbara, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions, Sci. Rep. 3 (2013), p. 1634 (6p).
  • T.A. Pecoraro and R.R. Chianelli, Hydrodesulfurization catalysis by transition metal sulfides, J. Catal. 67(2) (1981), pp. 430–445.
  • N. Ïzyumskaya, D.O. Demchenko, V. Avrutin, Ü. Özgür, and H. Morkoç, Two-dimensional MoS2 as a new material for electronic devices, Turk. J. Phys. 38 (2014), pp. 478–496.
  • S. Yang, D. Li, T. Zhang, Z. Tao, and J. Chen, First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries, J. Phys. Chem. C 116(1) (2012), pp. 1307–1312.
  • W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te), Phys. Rev. B 85(3) (2012), p. 033305 (5p).
  • J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102 (2013), p. 012111 (4p).
  • Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers, Physica B 406(11) (2011), pp. 2254–2260.
  • G. Arora, Y. Sharma, V. Sharma, G. Ahmed, S.K. Srivastava, and B.L. Ahuja, Electronic structure of layer type tungsten metal dichalcogenides WX2 (X = S, Se) using Compton spectroscopy: Theory and experiment, J. Alloys Compd. 470(1–2) (2009), pp. 452–460.
  • J. Augustin, V. Eyert, Th Böker, W. Frentrup, H. Dwelk, C. Janowitz, and R. Manzke, Electronic band structure of the layered compound Td-WTe2, Phys. Rev. B 62(16) (2000), p. 10812 (12p).
  • F. Chen, J. Wang, B. Li, C. Yao, H. Bao, and Y. Shi, Nanocasting synthesis of ordered mesoporous crystalline WSe2 as anode material for Li-ion batteries, Mater. Lett. 136 (2014), pp. 191–194.
  • W.X. Zhang, Z.S. Huang, W.L. Zhang, and Y.R. Li, Two-dimensional semiconductors with possible high room temperature mobility, Nano Res. 7(12) (2014), pp. 1731–1737.
  • G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9 (2014), pp. 768–779.
  • M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, and L. Xie, Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride, J. Am. Chem. Soc. 137 (2015), p. 7051 (4p).
  • H. Jiang, Structural and electronic properties of ZrX2 and HfX2 (X=S and Se) from first principles calculations, J. Chem. Phys. 134(20) (2011), p. 204705 (7p).
  • C. Gong, H.J. Zhang, W.H. Wang, L. Colombo, R.M. Wallace, and K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors, J. Appl. Phys. Lett. 103 (2013), p. 053513 (4p).
  • B. Yang, H. Zheng, R. Han, X. Dua, and Y. Yan, Tuning the magnetism of a ZrS2 monolayer by substitutional doping, RSC Adv. 4 (2014), pp. 54335–54343.
  • L. Li, X. Fang, T. Zhai, M. Liao, U.K. Gautam, X. Wu, Y. Koide, Y. Bando, and D. Golberg, Electrical transport and high- performance photoconductivity in individual ZrS2 nanobelts, Adv. Mater. 22 (2010), pp. 4151–4156.
  • A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83 (2011), p. 245213 (4p).
  • H. Guo, N. Lu, L. Wang, X. Wu, and X.C. Zeng, Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain, J. Phys. Chem. C 118 (2014), pp. 7242–7249.
  • M. Lukowski, A. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc. 135 (2013), pp. 10274–10277.
  • J.A. Reyes-Retana, G.G. Naumis, and F. Cervantes-Sodi, Centered honeycomb NiSe2 nanoribbons: structure and electronic properties, J. Phys. Chem. C 118(6) (2014), pp. 3295–3304.
  • F. Ersan, G. Gökoģglu, and E. Aktürk, Electronic structure of BSb defective monolayers and nanoribbons, J Phys Condens. Matter. 26 (2014), p. 325303 (8p).
  • V. Barone, O. Hod, and G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nanoletters 6 (2006), pp. 2748–2754.
  • Y. Zhang and X. Wu, Vanadium sulfide nanoribbons: electronic and magnetic properties, Phys. Lett. A 377 (2013), pp. 3154–3157.
  • U. Patel, S. Avci, Z.L. Xiao, J. Hua, S.H. Yu, Y. Ito, R. Divan, L.E. Ocola, C. Zheng, H. Claus, J. Hiller, U. Welp, D.J. Miller, and W.K. Kwok, Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons, Appl. Phys. Lett. 91 (2007), p. 162508 (3p).
  • M. Sluban, P. Umek, Z. Jaglicic, J. Buh, P. Smitek, A. Mrzel, C. Bittencourt, P. Guttmann, M.H. Delville, D. Mihailovic, and D. Arcon, Controlling disorder and superconductivity in titanium oxynitride nanoribbons with anion exchange, ACS Nano 9 (2015), pp. 10133–10141.
  • X.L. Zeng, M.R. Koblischka, and U. Hartmann, Synthesis and characterization of electrospun superconducting (La, Sr)CuO4 nanowires and nanoribbons, Mater. Res. Express 2 (2015), pp. 095022–095027.
  • Y.S. Hor, U. Welp, Y. Ito, Z.L. Xiao, U. Patel, J.F. Mitchell, W.K. Kwok, and G.W. Crabtree, Superconducting NbSe3 nanowires and nanoribbons converted from NbSe3 nanostructures, Appl. Phys. Lett. 87 (2005), p. 142506 (3p).
  • A.D. Zaikin, D.S. Golubev, A. van Otterlo, and G.T. Zimanyi, Quantum phase slips and transport in ultrathin superconducting wires, Phys. Rev. Lett. 78(8) (1997), pp. 1552–1555.
  • A. Bezryadin, C.N. Lau, and M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires, Nature 404 (2000), pp. 971–974.
  • C.N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham, Quantum phase slips in superconducting nanowires, Phys. Rev. Lett. 87 (2001), p. 217003 (4p).
  • A.S. Melnikov and V.M. Vinokur, Mesoscopic superconductor as a ballistic quantum switch, Nature 415 (2002), pp. 60–62.
  • M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98 (2007), p. 206805 (4p).
  • K. Tu, F. Li, and Z. Chen, Enhanced lithium adsorption/diffusion and improved Li capacity on SnS2 nanoribbons: A computational investigation, J. Mater. Res. 31(7) (2016), pp. 878–885.
  • Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, and Z. Chen, Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study, J. Phys. Chem. Lett. 3(16) (2012), pp. 2221–2227.
  • G. Kresse and J. Furthmüller, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), pp. 558–561.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mat. Sci. 6(1) (1996), pp. 15–50.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169 (18p).
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), p. 17953 (27p).
  • S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15) (2006), pp. 1787–1799.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865 (4p).
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), p. 5188 (5p).
  • E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman, An improved grid-based algorithm for Bader charge allocation, J. Comp. Chem. 28 (2007), pp. 899–908.
  • A. Kumar, H. He, R. Pandey, P.K. Ahluwalia, and K. Tankeshwar, Semiconductor-to-metal phase transition in monolayer ZrS2: GGA+ U study, AIP Conference Proceedings 1665 (2015), p. 090016 (5p).
  • A. Kumar, H. He, R. Pandey, P.K. Ahluwalia, and K. Tankeshwar, Pressure and electric field-induced metallization in the phase-engineered ZrS2 (X= S, Se, Te) bilayers, Phys. Chem. Chem. Phys. 17 (2015), pp. 19215–19221.
  • A.H. Reshak and S. Auluck, Theoretical investigation of the electronic and optical properties of ZrS2 (X= S, Se and Te), Phys. B 353(3–4) (2004), pp. 230–237.
  • Y. Li, J. Kang, and J. Li, Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations, RSC Adv. 4 (2014), pp. 7396–7401.
  • C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.