542
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations

, , &
Pages 2088-2114 | Received 25 Jan 2016, Accepted 06 May 2016, Published online: 17 Jun 2016

References

  • A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford, 1995.
  • L. Priester, Grain Boundaries: From theory to engineering, Springer, New York, 2013.10.1007/978-94-007-4969-6
  • T. Watanabe, Grain boundary engineering: Historical perspective and future prospects, J. Mater. Sci. 46 (2011), pp. 4095–4115.10.1007/s10853-011-5393-z
  • G. Palumbo and K.T. Aust, Localized corrosion at grain boundary intersections in high purity nickel, Scr. Metall. 22 (1988), pp. 847–852.10.1016/S0036-9748(88)80062-0
  • T. Watanabe, Grain boundary design for advanced materials on the basis of the relationship between texture and grain boundary character distribution (GBCD), Texture Microstruct. 20 (1993), pp. 195–216.
  • A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault, and C. Savall, Effects of grain orientation on the Hall-Petch relationship in electrodeposited nickel with nanocrystalline grains, Scr. Mater. 62 (2010), pp. 403–406.10.1016/j.scriptamat.2009.11.038
  • L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004), pp. 422–426.10.1126/science.1092905
  • D.J. Siegel and J.C. Hamilton, Computational study of carbon segregation and diffusion within a nickel grain boundary, Acta Mater. 53 (2005), pp. 87–96.10.1016/j.actamat.2004.09.006
  • H. Idrissi, B. Amin-Ahmadi, B. Wang, and D. Schryvers, Review on TEM analysis of growth twins in nanocrystalline palladium thin films: Toward better understanding of twin-related mechanisms in high stacking fault energy metals, Phys. Status Solidi (B) 251 (2014), pp. 1111–1124.10.1002/pssb.v251.6
  • D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.P. Choi, Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces, Curr. Opin. Solid State Mater. Sci. 18 (2014), pp. 253–261.10.1016/j.cossms.2014.06.002
  • Y. Fukai, M. Mizutani, S. Yokota, M. Kanazawa, Y. Miura, and T. Watanabe, Superabundant vacancy-hydrogen clusters in electrodeposited Ni and Cu, J. Alloys Compd. 356–357 (2003), pp. 270–273.10.1016/S0925-8388(02)01270-7
  • N. Shakibi Nia, J. Creus, X. Feaugas, and C. Savall, The effect of tungsten addition on metallurgical state and solute content in nanocrystalline electrodeposited nickel, J. Alloys Compd. 609 (2014), pp. 296–301.10.1016/j.jallcom.2014.04.192
  • C. Savall, A. Godon, J. Creus, and X. Feaugas, Influence of deposition parameters on microstructure and contamination of electrodeposited nickel coatings from additive-free sulphamate bath, Surf. Coat. Technol. 206 (2012), pp. 4394–4402.10.1016/j.surfcoat.2012.04.068
  • M.Q. Chandler, M.F. Horstemeyer, M.I. Baskes, G.J. Wagner, P.M. Gullett, and B. Jelinek, Hydrogen effects on nanovoid nucleation at nickel grain boundaries, Acta Mater. 56 (2008), pp. 619–631.10.1016/j.actamat.2007.10.037
  • F. Tang, D.S. Gianola, M.P. Moody, K.J. Hemker, and J.M. Cairney, Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour, Acta Mater. 60 (2012), pp. 1038–1047.10.1016/j.actamat.2011.10.061
  • A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, and X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater. 60 (2012), pp. 6814–6828.10.1016/j.actamat.2012.09.004
  • A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, and X. Feaugas, The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel, Scr. Mater. 66 (2012), pp. 37–40.10.1016/j.scriptamat.2011.09.036
  • A. Pedersen and H. Jónsson, Simulations of hydrogen diffusion at grain boundaries in aluminum, Acta Mater. 57 (2009), pp. 4036–4045.10.1016/j.actamat.2009.04.057
  • Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz, First-principles study on the interaction of H interstitials with grain boundaries in alpha- and gamma-Fe, Phys. Rev. B 84 (2011), pp. 144121-1–144121-13.
  • Y.A. Du, J. Rogal, and R. Drautz, Diffusion of hydrogen within idealized grains of bcc Fe: A kinetic Monte Carlo study, Phys. Rev. B 86 (2012), pp. 174110-1–174110-13.
  • Y. Yu, X. Shu, Y.-N. Liu, and G.-H. Lu, Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary, J. Nucl. Mater. 455 (2014), pp. 91–95.10.1016/j.jnucmat.2014.04.016
  • D. Di Stefano, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel, Acta Mater. 98 (2015), pp. 306–312.10.1016/j.actamat.2015.07.031
  • A.P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries, Philos. Trans. Royal Soc. A: Mathematical, Phys. Eng. Sci. 309 (1983), pp. 1–36.10.1098/rsta.1983.0020
  • A.P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries, Philos. Trans. Royal Soc. A: Mathematical, Phys. Eng. Sci. 309 (1983), pp. 37–54.10.1098/rsta.1983.0021
  • G.H. Bishop and B. Chalmers, A coincidence – Ledge — Dislocation description of grain boundaries, Scr. Metall. 2 (1968), pp. 133–139.10.1016/0036-9748(68)90085-9
  • K.L. Merkle and D. Wolf, Low-energy configurations of symmetric and asymmetric tilt grain boundaries, Philos. Mag. A 65 (1992), pp. 513–530.10.1080/01418619208201536
  • K.L. Merkle and D. Wolf, Structure and energy of grain boundaries in metals, Mater. Res. Soc. Bull. 15 (1990), pp. 42–50.
  • U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, and H.F. Fischmeister, The influence of grain boundary inclination on the structure and energy of σ = 3 grain boundaries in copper, Philos. Mag. A 66 (1992), pp. 991–1016.10.1080/01418619208248003
  • U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, and H.F. Fischmeister, The influence of grain boundary inclination on the structure and energy of Σ3 twin boundaries in copper, Mat. Res. Soc. Symp. Proc. 238 (1992), pp. 177–182.
  • F. Ernst, M.W. Finnis, D. Hofmann, T. Muschik, U. Schönberger, U. Wolf, and M. Methfessel, Theoretical prediction and direct observation of the 9 R structure in Ag, Phys. Rev. Lett. 69 (1992), pp. 620–623.10.1103/PhysRevLett.69.620
  • O. Duparc, S. Poulat, A. Larere, J. Thibault, and L. Priester, High-resolution transmission electron microscopy observations and atomic simulations of the structures of exact and near Σ = 11, {332} tilt grain boundaries in nickel, Philos. Mag. A 80 (2000), pp. 853–870.10.1080/01418610008212086
  • G.J. Wang, A.P. Sutton, and V. Vitek, A computer simulation study of 〈001〉 and 〈111〉 tilt boundaries: The multiplicity of structures, Acta Metall. 32 (1984), pp. 1093–1104.10.1016/0001-6160(84)90013-0
  • S.P. Chen, D.J. Srolovitz, and A. F. Voter, Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and Ni3Al, J. Mater. Res. 4 (1989), pp. 62–77.10.1557/JMR.1989.0062
  • J.D. Rittner and D.N. Seidman, 〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies, Phys. Rev. B 54 (1996), pp. 6999–7015.10.1103/PhysRevB.54.6999
  • M.A. Tschopp and D. McDowell, Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium, Philos. Mag. 87 (2007), pp. 3147–3173.10.1080/14786430701255895
  • M.A. Tschopp and D. Mcdowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium, Philos. Mag. 87 (2007), pp. 3871–3892.10.1080/14786430701455321
  • T. Muschik, W. Laub, U. Wolf, M.W. Finnis, and W. Gust, Energetic and kinetic aspects of the faceting transformation of a Σ3 grain boundary in Cu, Acta Metall. et Mater. 41 (1993), pp. 2163–2171.10.1016/0956-7151(93)90386-7
  • J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang, Dislocation structures of Σ 3 112 twin boundaries in face centered cubic metals, App. Phys. Lett. 95 (2009), pp. 021908-1–021908-3.
  • D. Wolf, Correlation between energy and volume expansion for grain boundaries in fcc metals, Scr. Metall. 23 (1989), pp. 1913–1918.10.1016/0036-9748(89)90482-1
  • D. Wolf, Structure-energy correlation for grain boundaries in fcc metals—III. Symmetrical tilt boundaries, Acta Metall. et Mater. 38 (1990), pp. 781–790.10.1016/0956-7151(90)90030-K
  • D. Wolf, Structure-energy correlation for grain boundaries in fcc metals—IV. Asymmetrical twist (general) boundaries, Acta Metall. et Mater. 38 (1990), pp. 791–798.10.1016/0956-7151(90)90031-B
  • D.L. Olmsted, S.M. Foiles, and E.A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy, Acta Mater. 57 (2009), pp. 3694–3703.
  • T. Uesugi and K. Higashi, First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: Role of grain boundary elastic energy, J. Mater. Sci. 46 (2011), pp. 4199–4205.10.1007/s10853-011-5305-2
  • X. Liu, X. Wang, J. Wang, and H. Zhang, First-principles investigation of Mg segregation at Σ = 11(113) grain boundaries in Al, J.Phys.: Condens. Mat. 17 (2005), pp. 4301–4308.10.1088/0953-8984/17/27/006
  • M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, and K.N. Solanki, Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries, Acta Mater. 73 (2014), pp. 312–325.10.1016/j.actamat.2014.04.011
  • M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe, Phys. Rev. B 85 (2012), pp. 064108-1–064108-21.
  • E. Vamvakoupols and D. Tanguy, Equilibrium vacancy concentrations in Al- Σ=33(554)[1–10] by grand canonical Monte Carlo simulations, Phys. Rev. B 79 (2009), pp. 094116-1–094116-11.
  • X.M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga, Role of atomic structure on grain boundary-defect interactions in Cu, Phys. Rev. B 85 (2012), pp. 214103-1–214103-10.
  • D. Farkas and K. Ternes, Atomistic study of the interaction of lattice vacancies with grain boundaries in Ni3Al, Intermetallics 4 (1996), pp. 171–177.10.1016/0966-9795(95)00044-5
  • A. Suzuki and Y. Mishin, Atomistic modeling of point defects and diffusion in copper grain boundaries, Interface Sci. 11 (2003), pp. 131–148.10.1023/A:1021599310093
  • G. Lu and N. Kioussis, Interaction of vacancies with a grain boundary in aluminium: A first-principles study, Phys. Rev. B 64 (2001), pp. 024101-1–024101-7.
  • W. Xiao, C.S. Liu, Z.X. Tian, and W.T. Geng, Effect of applied stress on vacancy segregation near the grain boundary in nickel, J. Appl. Phys. 104 (2008), pp. 053519-1–053519-6.
  • B.P. Uberuaga, L.J. Vernon, E. Martinez, and A.F. Voter, The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency, Sci. Rep. 5 (2015), 9095–9103.
  • C. Jiang, N. Swaminathan, J. Deng, D. Morgan, and I. Szlufarska, Effect of grain boundary stresses on sink strength, Mater. Res. Lett. 2 (2014), pp. 100–106.10.1080/21663831.2013.871588
  • A. Metsue, A. Oudriss, and X. Feaugas, Displacement field induced by a vacancy in nickel and some implications for the solubility of hydrogen, Philos. Mag. 94 (2014), pp. 3978–3991.10.1080/14786435.2014.975769
  • F.C. Larché and J.W. Cahn, Overview no. 41 The interactions of composition and stress in crystalline solids, Acta Metall. 33 (1985), pp. 331–357.10.1016/0001-6160(85)90077-X
  • R. Kirchheim and J.P. Hirth, Stress and solubility for solutes with asymmetrical distortion fields, Acta Metall. 35 (1987), pp. 2899–2903.10.1016/0001-6160(87)90288-4
  • H. Zhang, M.I. Mendelev, and D.J. Srolovitz, Mobility of Σ5 tilt grain boundaries: Inclination dependence, Scr. Mater. 52 (2005), pp. 1193–1198.10.1016/j.scriptamat.2005.03.012
  • W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer-Verlag, Berlin, 1970.10.1007/978-3-642-49173-3
  • M.S. Daw and M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50 (1983), pp. 1285–1288.10.1103/PhysRevLett.50.1285
  • J.E. Angelo, N.R. Moody, and M.I. Baskes, Trapping of hydrogen to lattice defects in nickel, Modell. Simul. Mater. Sci. Eng. 3 (1995), pp. 289–307.10.1088/0965-0393/3/3/001
  • C.B. Carter and S.M. Holmes, The stacking-fault energy of nickel, Philos. Mag. 35 (1977), pp. 1161–1172.10.1080/14786437708232942
  • L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison Wesley, Reading, MA, 1975.
  • S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Computat. Phys. 117 (1995), pp. 1–19; LAMMPS for Large-scale Atomic Molecular Massively Parallel Simulator. Sandia Nat. Lab. (http://lammps.sandia.gov).10.1006/jcph.1995.1039
  • S.M. Foiles and J.J. Hoyt, Computation of grain boundary stiffness and mobility from boundary fluctuations, Acta Mater. 54 (2006), pp. 3351–3357.10.1016/j.actamat.2006.03.037
  • N.M. Rosengaard and H.L. Skriver, Calculated stacking-fault energies of elemental metals, Phys. Rev. B 47 (1993), pp. 12865–12873.10.1103/PhysRevB.47.12865
  • N. Bernstein and E.B. Tadmor, Tight-binding calculations of stacking energies and twinnability in fcc metals, Phys. Rev. B 69 (2004), pp. 094116-1–094116-10.
  • J. Wang, A. Misra, and J.P. Hirth, Shear response of Σ3{112} twin boundaries in face-centered-cubic metals, Phys. Rev. B 83 (2011), pp. 064106-1–064106-8.
  • M. Clavel and X. Feaugas, Micromechanisms of plasticity under multiaxial cyclic loading. Proc. 4th Int. Conf. on Biaxial/Multiaxial Fatigue, Paris, 1994, (vol. 1 pp. 17–30).
  • P. Franciosi, The concepts of latent hardening and strain hardening in metallic single crystals, Acta Metall. 33 (1985), pp. 1601–1612.10.1016/0001-6160(85)90154-3
  • J.P. Hirth and J.L. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, NY, 1982.
  • C.B. Carter and I.L.F. Ray, On the stacking-fault energies of copper alloys, Philos. Mag. 35 (1977), pp. 189–200.10.1080/14786437708235982
  • M.L. Jenkins, Measurement of the stacking-fault energy of gold using the weak-beam technique of electron microscopy, Philos. Mag. 26 (1972), pp. 747–751.10.1080/14786437208230118
  • A. Hunter, I.J. Beyerlein, T.C. Germann, and M. Koslowski, Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three-dimensional phase field dislocations dynamics model, Phys. Rev. B 84 (2011), pp. 144108-1–144108-10.
  • D.C. Bufford, Synthesis and properties of nanotwinned silver and aluminium. Ph.D. diss., Texas A&M University, 2013.
  • P.J. Goodhew, T.Y. Tan, and R.W. Balluffi, Low energy planes for tilt grain boundaries in gold, Acta Metall. 26 (1978), pp. 557–567.10.1016/0001-6160(78)90108-6
  • R. Dingreville, A. Hallil, and S. Berbenni, From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses, J. Mech. Phys. Solids 72 (2014), pp. 40–60.10.1016/j.jmps.2014.08.003
  • P. Ehrhart, P. Jung, H. Schultz, and H. Ullmaier Atomic Defects in Metals. Landolt-Börnstein, New Series, Group III, H. Ullmaier, ed., Springer-Verlag, Berlin, 1991, pp. 242–250 .
  • P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, A.V. Ruban, and H.L. Skriver, First-principles calculations of the vacancy formation energy in transition and noble metals, Phys. Rev. B 59 (1999), pp. 11693–11703.10.1103/PhysRevB.59.11693
  • A. Metsue, A. Oudriss, J. Bouhattate, and X. Feaugas, Contribution of the entropy on the thermodynamic equilibrium of vacancies in nickel, J. Chem. Phys. 140 (2014), pp. 104705-1–104705-11.
  • D. Connétable, Y. Wang, and D. Tanguy, Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities, J. Alloys Compd. 614 (2014), pp. 211–220.10.1016/j.jallcom.2014.05.094
  • L.Y. Nemirovich-Danchenko, A.G. Lipnitskiĭ, and S.E. Kul’kova, Vacancies and their complexes in FCC metals, Phys. Solid State 49 (2007), pp. 1079–1085.10.1134/S1063783407060108
  • M.R. Sørensen, Y. Mishin, and A.F. Voter, Diffusion mechanisms in Cu grain boundaries, Phys. Rev. B 62 (2000), pp. 3658–3673.10.1103/PhysRevB.62.3658
  • J.D. Eshelby, The continuum theory of lattice defects, Solid State Phys. 3 (1956), pp. 79–144.
  • Y. Mishin, M.R. S⊘rensen, and A.F. Voter, Calculation of point-defect entropy in metals, Philos. Mag. A 81 (2001), pp. 2591–2612.10.1080/01418610108216657

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.