867
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation of the elemental partitioning behaviour and site preference in ternary model nickel-based superalloys by atom probe tomography and first-principles calculations

, , , , &
Pages 2204-2218 | Received 21 Sep 2015, Accepted 16 May 2016, Published online: 29 Jun 2016

References

  • R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. Available at https://doi.org/http://dx.doi.org/10.1017/CBO9780511541285.
  • T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties, J. propul. power 22(2) (2006), pp. 361–374.
  • C.T. Sims, N.S. Stoloff, and W.C. Hagel, superalloys II, Wiley-Interscience, New York, NY, 1987.
  • P. Warren, A. Cerezo, and G. Smith, An atom probe study of the distribution of rhenium in a nickel-based superalloy, Mater. Sci. Eng., A 250(1) (1998), pp. 88–92.
  • T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi, and H. Harada, Partitioning behavior of platinum group metals on the γ and γ' phases of Ni-base superalloys at high temperatures, Scr. Mater. 49(10) (2003), pp. 1041–1046.
  • R. Reed, A. Yeh, S. Tin, S. Babu, and M. Miller, Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography, Scr. Mater. 51(4) (2004), pp. 327–331.
  • S. Walston, A. Cetel, R. MacKay, K. Ohara, D. Duhl, and R. Dreshfield, Joint development of a fourth generation single crystal superalloy, in Superalloys 2004, TMS Pennsylvania, 2004,pp. 15–24. Available at http://www.tms.org/Superalloys/10.7449/2004/Superalloys_2004_15_24.pdf.
  • A. Volek, F. Pyczak, R. Singer, and H. Mughrabi, Partitioning of Re between γ and γ' phase in nickel-base superalloys, Scr. Mater. 52(2) (2005), pp. 141–145.
  • B. Ge, Y. Luo, J. Li, and J. Zhu, Study of γ/γ' interfaces in nickel-based, single-crystal superalloys by scanning transmission electron microscopy, Metall. Mater. Trans. A 42(3) (2011),pp. 548–552.
  • J. Van Sluytman, A. La Fontaine, J. Cairney, and T. Pollock, Elemental partitioning of platinum group metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography, Acta Mater. 58(6) (2010), pp. 1952–1962.
  • G.L. Erickson, Single crystal nickel-based superalloy, US Patent 5,366,695, Nov 22, 1994.
  • W. Wang, T. Jin, J. Liu, X. Sun, H. Guan, and Z. Hu, Role of Re and Co on microstructures and γ coarsening in single crystal superalloys, Mater. Sci. Eng. A 479(1) (2008), pp. 148–156.
  • M. Nathal and L. Ebert, The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys, Metall. Trans. A 16(10) (1985), pp. 1849–1862.
  • A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi, and H. Imai, The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys, Scr. Mater. 54(9) (2006), pp. 1679–1684.
  • R. Hobbs, L. Zhang, C. Rae, and S. Tin, Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 °, Metall. Mater. Trans. A 39(5) (2008), pp. 1014–1025.
  • S. Ma, L. Carroll, and T. Pollock, Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys, Acta Mater. 55(17) (2007), pp. 5802–5812.
  • X. Wang, J. Liu, T. Jin, and X. Sun, The effects of ruthenium additions on tensile deformation mechanisms of single crystal superalloys at different temperatures, Mater. Des. 63 (2014),pp. 286–293.
  • E.W. Ross and K.S. OHara, Rene N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength, in Superalloys 1996, TMS Pennsylvania, 1996, pp. 19–25. Available at http://www.tms.org/superalloys/10.7449/1996/Superalloys_1996_19_25.pdf.
  • D.N. Duhl and A.D. Cetel, Advanced high strength single crystal superalloy compositions, US Patent 4,719,080, Jan 12, 1988.
  • Y. Zhou, Z. Mao, C. Booth-Morrison, and D.N. Seidman, The partitioning and site preference of rhenium or ruthenium in model nickel-based superalloys: An atom-probe tomographic and first-principles study, Appl. Phys. Lett. 93(17) (2008), p. 171905.
  • Y. Tu, Z. Mao, and D.N. Seidman, Phase-partitioning and site-substitution patterns of molybdenum in a model Ni--Al--Mo superalloy: An atom-probe tomographic and first-principles study, Appl. Phys. Lett. 101(12) (2012), p. 121910.
  • Y. Amouyal, Z. Mao, and D.N. Seidman, Combined atom probe tomography and first-principles calculations for studying atomistic interactions between tungsten and tantalum in nickel-based alloys, Acta Mater. 74 (2014), pp. 296–308.
  • D. Blavette, A. Bostel, and J. Sarrau, Atom-probe microanalysis of a nickel-base superalloy, Metall. Trans. A 16(10) (1985), pp. 1703–1711.
  • N. Wanderka and U. Glatzel, Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy, Mater. Sci. Eng. A 203(1) (1995), pp. 69–74.
  • D. Collins, L. Yan, E. Marquis, L. Connor, J. Ciardiello, A. Evans, and H. Stone, Lattice misfit during ageing of a polycrystalline nickel-base superalloy, Acta Mater. 61(20) (2013), pp. 7791–7804.
  • H. Murakami, Y. Saito, and H. Harada, Determination of atomistic structure of Ni-base single crystal superalloys using Monte Carlo simulations and atom-probe microanalyses, in Superalloys 1996, TMS Pennsylvania, 1996, pp. 249–257. Available at http://www.tms.org/superalloys/10.7449/1996/Superalloys_1996_249_257.pdf.
  • X. Yu, C. Wang, X. Zhang, P. Yan, and Z. Zhang, Synergistic effect of rhenium and ruthenium in nickel-based single-crystal superalloys, J. Alloys Compd. 582 (2014), pp. 299–304.
  • C.K. Sudbrack, D. Isheim, R.D. Noebe, N.S. Jacobson, and D.N. Seidman, The influence of tungsten on the chemical composition of a temporally evolving nanostructure of a model Ni--Al--Cr superalloy, Microsc. Microanal. 10 (2004), pp. 355–365.
  • C. Booth-Morrison, J. Weninger, C.K. Sudbrack, Z. Mao, R.D. Noebe, and D.N. Seidman, Effects of solute concentrations on kinetic pathways in Ni--Al--Cr alloys, Acta Mater. 56(14) (2008), pp. 3422–3438.
  • M. Chaudhari, A. Singh, P. Gopal, S. Nag, G. Viswanathan, J. Tiley, R. Banerjee, and J. Du, Site occupancy of chromium in the γ'-Ni3Al phase of nickel-based superalloys: A combined 3d atom probe and first-principles study, Philos. Mag. Lett. 92(9) (2012), pp. 495–506.
  • M. Enomoto and H. Harada, Analysis of γ/γ' equilibrium in Ni--Al--X alloys by the cluster variation method with the Lennard--Jones potential, Metall. Trans. A 20(4) (1989), pp. 649–664.
  • C. Booth-Morrison, Z. Mao, R.D. Noebe, and D.N. Seidman, Chromium and tantalum site substitution patterns in Ni3Al (l12) γ-precipitates, Appl. Phys. Lett. 93(3) (2008), p. 033103.
  • S. Ochial, Y. Oya, and T. Suzuki, Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge, Acta Metall. 32(2) (1984), pp. 289–298.
  • R.D. Rawlings and A.E. Staton-Bevan, The alloying behaviour and mechanical properties of polycrystalline Ni3Al (γ phase) with ternary additions, J. Mater. Sci. 10(3) (1975), pp. 505–514.
  • J.S. Tiley, O. Senkov, G. Viswanathan, S. Nag, J. Hwang, and R. Banerjee, A methodology for determination of γ site occupancies in nickel superalloys using atom probe tomography and x-ray diffraction, Metall. Mater. Trans. A 44(1) (2013), pp. 31–38.
  • M. Miller and J. Horton, Site occupation determinations by apfim for Hf, Fe, and Co in Ni3Al, Scr. Metall. 20(8) (1986), pp. 1125–1130.
  • Y.-J. Wang and C.-Y. Wang, A first-principles survey of the partitioning behaviors of alloying elements on γ/γ' interface, J. Appl. Phys. 104(1) (2008), p. 013109.
  • M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, Springer Science and Business Media, 2012. doi:10.1007/978-1-4615-4281-0. Available at http://www.springer.com/us/book/9780306464157.
  • O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman, Analysis of three-dimensional atom-probe data by the proximity histogram, Microsc. Microanal. 6(05) (2000), pp. 437–444.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), pp. 558–561.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186.
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), pp. 1758–1775.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989), pp. 3616–3621.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • W. Chong-yu, L. Sen-ying, and H. Lin-guang, Electronic structure of impurity (oxygen) stacking-fault complex in nickel, Phys. Rev. B 41 (1990), pp. 1359–1367.
  • R. Ricks, A. Porter, and R. Ecob, The growth of precipitates in nickel-base superalloys, Acta Metall. 31(1) (1983), pp. 43–53.
  • M. Fährmann, P. Fratzl, O. Paris, E. Fährmann, and W.C. Johnson, Influence of coherency stress on microstructural evolution in model Ni--Al--Mo alloys, Acta Metall. Mater. 43(3) (1995),pp. 1007–1022.
  • P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM International, 1991. Available at https://books.google.com.hk/books?id=GfJUAAAAMAAJ.
  • P. Caron, High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications, in Superalloys 2000, TMS Pennsylvania, 2000, pp. 737–746. Available at http://www.tms.org/superalloys/10.7449/2000/Superalloys_2000_737_746.pdf.
  • Y. Koizumi, T. Kobayashi, T. Yokokawa, J. Zhang, M. Osawa, H. Harada, Y. Aoki, and M. Arai, Development of next-generation Ni-base single crystal superalloys, in Superalloys 2004, TMS Pennsylvania, 2004, pp. 35–43. Available at http://www.tms.org/superalloys/10.7449/2004/Superalloys_2004_35_43.pdf.
  • X. Tan, D. Mangelinck, C. Perrin-Pellegrino, L. Rougier, C.-A. Gandin, A. Jacot, D. Ponsen, and V. Jaquet, Atom probe tomography of secondary γ' precipitation in a single crystal Ni-based superalloy after isothermal aging at 1100 °C, J. Alloys Compd 611 (2014), pp. 389–394.
  • I. Povstugar, P.-P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Goken, and D. Raabe, Elemental partitioning and mechanical properties of Ti- and Ta-containing Co--Al--W-base superalloys studied by atom probe tomography and nanoindentation, Acta Mater. 78 (2014), pp. 78–85.
  • S. Meher, H.-Y. Yan, S. Nag, D. Dye, and R. Banerjee, Solute partitioning and site preference in γ/γ' cobalt-base alloys, Scr. Mater. 67(10) (2012), pp. 850–853.
  • A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B 61 (2000), pp. 15019–15027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.